

Journal of **Pharmacology and Toxicology**

ISSN 1816-496X

Zinc Oxide (ZnO): An Efficient Catalyst for the Synthesis of 4-arylmethylidene-2-phenyl 5(4H)-oxazolones Having Antimicrobial Activity

¹M.A. Päsha, ¹V.P. Jayäshankara, ²K.N. Venugopala and ²Gopal Krishna Rao
¹Department of Studies in Chemistry, Central College Campus,
Bangalore University, Bangalore-560 001, India
²Department of Pharmaceutical Chemistry, Al-Ameen College of Pharmacy,
Hosur Road, Opp. Lalbagh Main Gate, Bangalore-560 027, India

Abstract: A straightforward and a general method has been developed for the synthesis of some important functionalized 4-arylmethylidene-2-phenyl-5(4H)-oxazolone derivatives by combining analdehydes and hippuric acid in the presence of catalytic amount of zinc oxide at room temperature in ethyl alcohol is reported. The method was very easy, rapid and products obtained were in excellent yields. The compounds were purified, characterized and were subjected for *in vitro* antibacterial activity (determination of *Minimum Inhibitory Concentration* (MIC) by micro titration method) using two standard drugs Streptomycin and Ampicillin against *Bacillus subtilis* and *Escherichia coli*. Five of the synthesized compounds showed remarkable antibacterial activity when compared to that of standards.

Key words: 4-Arylmethylidene-2-phenyl-5(4*H*)-oxazolones, araldehydes, hippuric acid, Zinc oxide (ZnO), Room temperature, antibacterial activity, Minimum Inhibitory Concentration

INTRODUCTION

4-arylmethylidene -2-phenyl-5(4H)-oxazolones are widely used in the synthesis of many natural products (Cannella et al., 1996). These molecules have biological activity and find applications in pharmacological studies (Gelmi et al., 1997). Some oxazolones are highly versatile intermediates; used for the synthesis of several organic molecules including aminoacids (Bautista et al., 1992), peptides (Cavalier and Verducci, 1995; Gottwald and Seebach, 1999; Meiwes et al., 1997; Seebach et al., 1997; Cativiela et al., 1997; Bun nel et al., 1995; Donati et al., 1996), antimicrobial and antitumor compounds (Martinez et al., 1964), heterocyclic precursors (Avenoza et al., 2002; Croce et al., 1994; Cannella et al., 1996), immunomodulators (Mesaik et al., 2004), biosensors or photosensitive composition devices for proteins (Penalba et al., 2000; Kojima et al., 1998). Due to pharmacological and other applications (Cativiela et al., 1996), synthesis of 4-arylmethylidene-2-phenyl-5(4H)oxazolones has gained acceptance and popularity. The preparation of oxazolone derivatives is achieved by the condensation of araldehyde, hippuric acid and acetic anhydride in the presence of various reagents and catalysts such as Pb(OAc)2 (Cativiela et al., 1999; Cativiela and Melendez, 1978), Al2O3-H₃BO₃(Ringold et al., 1956), Bi(III) salts (Khodaei et al., 2003), ZnCl₂(Rao and Venkataraman, 1994) and Montmorillonite K-10 (Karade et al., 2005). Under microwave irradiation using Ca(OAc)₂ (Paul et al., 2004), Pd(OAc)₂ (Hamidian and Tikari, 2006) and KF/NaOAc (Bautista et al., 2002). Many of the existing methods involve expensive reagents, strongly acidic conditions, require longer reaction duration, high temperatures, incompatible with other functional groups, involve cumbersome product isolation and give unsatisfactory yields.

Recently Paul *et al.* (2004) and Hamidian and Tikari (2006), have reported the synthesis of 4-arylmethylidene-2-aryl-5(4H)-oxazolones from arylaldehydes, hippuric acid and acetic anhydride in the presence of catalytic amounts of calcium acetate or palladium acetate respectively under microwave irradiation in good yields, where chemistry community fails to carryout reactions on a large-scale.

MATERIALS AND METHODS

Melting points were determined on a Büchi melting point apparatus. IR spectra were recorded on Nicolet 400D FT-IR spectrophotometer, ¹H-NMR, ¹³C-NMR were recorded on 200 MHZ Bruker spectrometer, GC-MS using Shimadzu GC-MS QP 5050A spectrometer and elemental analysis was performed on Themo Finnigan FLASH EA 1112 CHNS analyzer. Araldehydes, hippuric acid and ZnO were all AR grade and were used without purification.

Minimum Inhibitory Concentration (MIC) of the synthesized compounds was determined using micro-titration method, where *Luria broth medium* was used as medium for MIC determination.

Antibacterial Activity

Determination of Minimum Inhibitory Concentration (MIC)

The determination of minimum inhibitory concentration (Elisabeth Lowdin *et al.*, 1993; Kotretsou *et al.*, 1995) was done with the *Escherichia coli* and *Bacillus subtilis* two isolates were inoculated into *Luria broth medium* which contains 1% tryptone, 0.5% yeast extract and 0.5% sodium chloride; the pH of the medium was adjusted to 7.2 with sterile phosphate buffered saline and incubated at 37°C for 24 h. The optical density of the bacteria from mid log phase of growth was measured at 540 nm and diluted in fresh medium so as to get an optical density of 0.004 (corresponding to 5×10^5 colony forming units/mL. To each well of the ELISA plate (Corning, USA), 200 μ L of diluted bacterial suspension was added and graded concentrations (0.2-500 μ g/50 μ L) of the synthesized compounds and two standard antibiotics (*Streptomycin* and *Ampicillin*) in dimethyl sulfoxide were added and incubated at 37°C for 24 h. At the end of incubation, the effect of the drugs on the growth of organisms was monitored by measuring the optical density at 540 nm using ELISA reader (Multiscan MS, Labsystems, Helsinki, Finland). The MIC was defined as the lowest concentration of the antibiotic or test sample allowing no visible growth. Determination of MICs was performed in triplicate and the results are tabulated in Table 2.

General Procedure for 4-(4'-flurobenylidene)-2-phenyloxazol-5(4H)-one

A mixture of p-fluorobenzaldehyde (1.24 g, 10 mmole), hippuric acid (1.79 g, 10 mmole), acetic anhydride (30 mmol), catalytic amount of ZnO (dry powder 0.49 mg, 6 mmole) and 10 mL ethyl alcohol were serried at room temperature (25°C), the syrupy reaction mixture solidified for a certain period of time (Table 2) as required to complete the reaction at room temperature (25°C). The reaction mixture was added to cold ethyl alcohol (30 mL) for extraction, the solid obtained after solvent evaporation was washed with hot water (2×10 mL), dried and recrystallized ($C_2H_5OH:H_2O$) to afford pure yellow colored crystals of title compound (3m) (2.61 g, 98%).

Spectral Data

4-(4'-Flurobenylidene)-2-phenyloxazol-5(4*H*)-one (3m): IR (Kbr) cm⁻¹ 1794, 1658, 1595, 1560, 1496, 1172, 834, 690; 1 H-NMR (CDCl₃+DMSO) δ 7.15 (s, 1H), 7.40 (d, 2H, J = 8.3 Hz), 7.52-7.64 (m, 3H) 8.17-8.25 (m, 4*H*); 13 C-NMR (CDCl₃+DMSO) δ 124.73(C), 128.23(CH), 129.14(CH), 129.17(CH), 129.57(CH), 132.11(C), 132.69(CH), 133.86(C), 133.94(C), 164.79(C), 166.80(C); *Elemental Anal.* Calculated for C₁₆H₁₀N: C, 71.91; H, 3.76; N, 5.23; Found: C, 71.82; H, 3.70; N, 5.18; MS: m/z = 267 (M⁺).

RESULTS AND DISCUSSION

In continuation of our investigation on the use of heterogeneous catalysts for the preparation of medicinally important molecules under environmentally safe conditions (Pasha and Jayashankara, 2006a-f; Pasha *et al.*, 2006), we have found that, ZnO, which is an inexpensive, readily available and common laboratory chemical, can efficiently catalyze this reaction. We have been able to use ZnO as a catalyst for the synthesis of 4-arylmethylidene-2-phenyl-5(4H)-oxazolones (3a-m) from araldehydes (1), hippuric acid (2) and acetic anhydride in ethyl alcohol at room temperature in about 20 min as shown in Scheme 1.

To demonstrate the protocol, we selected *p*-anisaldehyde as the model substrate and treated with hippuric acid, acetic anhydride and catalytic amount of ZnO in ethyl alcohol at room temperature for 10 min to obtain the desired 4-arylmethylidene-2-phenyl-5(4H)-oxazolone (95%, entry 6, Table 1). Comparison of existing catalysts and different methodologies is also shown in Table 1.

The method was extended to obtain the remaining compounds and check for their antibacterial activity to determine *minimum inhibitory concentration* using two standard drugs *Streptomycin* and *Ampicillin*; the results are tabulated in Table 2.

When compared to other reported methods, we have found that ZnO is an efficient catalyst for the preparation of 4-arylmethylidine-2-aryl-5(4H)-oxazolones (3 a-m) in high yields, under mild reaction condition, in a short duration of time. Several interesting features of the preparation of 4-arylmethylidene-2-phenyl-5(4H)-oxazolones are apparent from Table 2. More importantly, the substituents such as OCH₃, Cl, F and NO₂ are unaffected under the reaction condition. Thus, the results summarized in the Table 2 clearly indicate the scope of the reaction with respect to various substituted aromatic aldehydes.

R = H, OCH₅, CH₅, Me₂N, NO₂, F, CI

Scheme 1

Table 1: Comparison of the reported methods for the condensation of p-anisaldehyde with hippuric acid in the presence of different catalysts

Entry	Catalyst	Time	Temp. (°C)	Yield (%) ^b
1	Mont.K-10	6 h	Reflux	89
2	Bi(III) salts	1 h	Reflux	75-88
3	$Ca(OAc)_2$	3 min	MW	99
4	$Pd(OAc)_2$	3 min	MW	98
5	KF/NaOAc	15 min	MW	78
6	ZnO (6 mmole) ^a	10 min	Room temp.	95

^aPresent method: p-anisaldehyde (10 mmole), hippuric acid (10 mmole) and acetic anhydride (30 mmole) were stirred together to afford 3b. ^bisolated yields

Table 2: Conversion of substituted arylaldehyde to their corresponding 4-arylmethylidene-2-phenyl-5(4H)-oxazolones(3a-m) in the presence ZnO

	oxazolones(3a-m) in the presence			Melting point (°C)		Antibacterial Activity (MIC)	
						Bacillus subtilis	Escherichia coli
Entry	Products ^a	Yield ^b (%)	Time (min)	Found	Reported	 MIC (μg/50 μL)	MIC (μg/50 μL)
3a		90	10	170-71	170	230.6	233.6
3b	MeO — H	95	10	165	165	259.2	243.2
3c	on O	92	10	240-41	241	268.8	256.0
3d	NO.	92	10	165-66	166	281.6	307.2
3e		92	10	195	195-96	272.0	294.4
3f	H,C — H	94	15	145	145-46	180.8	167.0
3g		95	10	204-05	203-04	179.2	160.0
3h		95	10	155	156	185.6	182.4
3i		92	15	170	171	204.6	230.8
3j	(CE),N-(CE)	90 1	15	210-12	213	192.0	243.6
3k	CH-CH-	92	15	130-32	132	230.4	180.0
31	H.C.	95	15	105-06	106-107	205.2	192.4
3m		98	10	169-170	-	166.4	160.4
Strepto Ampic	omycin illin icts 3a-31 are known (ref. 11.1)					128.8 131.2	134.4 132.8

 8 Products 3a-31 are known (ref, 11,13,14 and 15) and compound 3m is new; all the products were characterized by IR, 1 H-NMR, GC-MS and CHN analysis and compared with the authentic samples

CONCLUSIONS

In conclusion, we demonstrated an efficient synthesis of 4-arylmethylidene-2-aryl-5(4H)-oxazolones using a catalytic amount of ZnO under room temperature. Out of the thirteen compounds synthesized four compounds 3f, 3g, 3h and 3m showed significant MIC at 180.8, 179.2, 185.6 and 166.4 μ g/50 μ L, respectively against *Bacillus subtilis*. Compound 3j showed medium MIC activity at 192.0 μ g/50 μ L against same organism. Compounds 3f, 3g, 3h, 3k and 3m also exhibited MIC at 167.0, 160.0, 182.4, 180.0 and 160.4 μ g/50 μ L, respectively against *Escherichia coli*. Compound 3l showed medium MIC at 192.4 μ g/50 μ L against *Escherichia coli*. One of the methyl derivatives i.e., 4-(p-methyl benzylidene)-2-phenyl-(4H)-oxazol-5-one also exhibited significant activity at 180.8 and 167.0 μ g/50 μ L against *Bacillus subtilis* and *Escherichia coli*. The above observations revealed that halogen derivatives of substituted oxazolones seem to have significant antibacterial activity against two strains of the experimental organisms.

REFERENCES

- Avenoza, A., J.H. Busto, C. Cativiela and J.M. Peregrins, 2002. Reactivity of (Z)-4-arylidene-5(4*H*)-oxazolones: [4+2] cycloaddition versus [4+3] cycloaddition/ nucleophilic trapping. Tetrahedron Lett., 43: 4167.
- Bautista, F.M., J.M. Campelo, D.L. Garcia and J.M. Marinas, 1992. Porcine pancreatic lipase-catalized enantioselective hydrolysis of N-protected amino acid methyl-esters. Amino Acids, 2: 87-95
- Bautista, F.M., J.M. Campelo, A. Garcia, D. Luna, J.M. Marinas and A.A. Romero, 2002. Study on dry-media microwave azalactone synthesis on different supported KF catalysts: Influence of textural and acid-base properties of supports. J. Chem. Soc., Perkin Trans., 2: 227-234.
- Bun nel, E., C. Cativiela and M.D. Dr'az-de-Villegas, 1995. Z -2-Phenyl-4-[(S)- 2,2-dimethyl-1,3-dioxolan-4-ylmethylen]-5(4H)-oxazolone as the Dienophile in Asymmetric Diels-Alder Reactions Tetrahedron, 32: 8923-8934.
- Cannella, R., F. Clerici, M.L. Gelmi, M. Penso and D. Pocar, 1996. A new synthesis of functionalized 2-alkylidenetetrahydro-5-furanones by tandem alkylation and translactonization reactions of 5(4H)-oxazolones. J. Org. Chem., 61: 1854-1856.
- Cativiela, C. and E. Melendez, 1978. Geometric isomers of 2-Phenyl-4-(β-arylethylidene)-5(4*H*)-oxazolones. Synthesis, pp: 832-834.
- Cativiela, C., J.M. Fraile, J.J. Garcı'a, M.P. Lo'pez, J.A. Mayoral and E. Pires, 1996. Diels-Alder reactions of (E)-2-phenyl-4-[(S)-2,2-dimethyl-1,3-dioxolan-4-ylmethylen] -5(4H)-oxazolone with heterogeneous catalysts. Tetrahedron Asymmetry, 7: 2391-2398.
- Cativiela, C., M.D. Dr'az-de-Villegas, J.I. Garcr'a and A.I. Jime'nez, 1997. 1,3-Dipolar cycloaddition of diazomethane to chiral azlactones. Experimental and theoretical studies. Tetrahedron, 53: 4479-4486.
- Cativiela, C., M.D. Diaz-de-villegas and J.A. Galvez, 1999. Synthesis and chemical resolution of unique α , β -didehydroamino acids with a chiral axis. Tetrahedron Lett., 40: 1027-1030.
- Cavalier, F. and J. Verducci, 1995. New synthesis of the cyclic tetrapeptide tentoxin employing an azlactone as key intermediate. Tetrahedron Lett., 36: 4425-4428.
- Croce, P.D., R. Ferraccioli and C.L. Rosa, 1994. Reaction of 2, 4- diphenyl-4, 5-dihydro-1, 3-oxazol-5-one with 4-phenyl-N-tosyl-1azabuta-1, 3-diene; C = C versus C = N double bond addition. J. Chem. Soc., Perkin Trans., 1: 2499-2502.

- Donati, D., A.G. Aburbeh, B. Natalini, C. Marchioro and R. Pellicciari, 1996. Conformationally constrained tryptophan analogs. Synthesis of (±)-(Z)- and (±)-(E)-2-amino-2,3-methano-3-(indol-3-yl)-propanoic acids. Tetrahedron, 52: 9901-9908.
- Elisabeth, L., O.T. Inga, S. Bengtsson and C. Otto, 1993. A new method to determine postantibiotic effect and effects of subinhibitory antibiotic concentrations. Antimicrob. Agents Chemother., 37: 2200-2205.
- Gelmi, M.L., F. Clerici and A. Melis, 1997. 5(4H)-Oxazolones. Part X. acid and base effects on the translactonization reaction of 4-(2-oxa-alkylidene)-5(4H)-oxazolones: New synthesis of 5-alkylidene-3-benzoylamino-2(5H)-furanones. Tetrahedron, 53: 1843-1854.
- Gottwald, K. and D. Seebach, 1999. Ring opening with kinetic resolution of azlactones by Ti-TADDOLates. Tetrahedron, 55: 723-738.
- Hamidian, H. and A.M. Tikari, 2006. Novel synthesis of unsaturated 5(4H)-oxazolone derivatives with using palladium(II) acetate as a catalyst and microwave irradiation in solvent free condition. Heterocycl. Commun., 12: 29-30.
- Karade, N.N., S.G. Shirodkar, B.M. Dhoot and P.B. Waghmare, 2005. Montmorillonite K-10 mediated Erlenmeyer synthesis of 4-arylmethylene-2-phenyl-5(4H)-oxazolones. J. Chem. Res. Synop., pp: 46-47.
- Khodaei, M.M., A.R. Khosropour and S.J.H. Jomor, 2003. Efficient and chemoselective conversion of aryl aldehydes to their azalactones catalysed by Bi(III) salts under solvent free conditions. J. Chem. Res. Synop., pp. 638-641.
- Kojima, S., H. Ohkawa, T. Hirano, S. Maki, H. Niwa, M. Ohashi, S. Inouye and F.I. Tsuji, 1998. Fluorescent properties of model chromophores of tyrosine-66 substituted mutants of *Aequorea* green fluorescent protein (GEP). Tetrahedron Lett., 39: 5239-5242.
- Kotretsou, S., M.P.M. Leclereg, V. Kokotou, R. Brasseur, M.P. Geogiadis and P.M. Tulkens, 1995. Synthesis and antimicrobial and toxicological studies of amino acid and peptide derivatives of Kanamycin A and Netilyicin. J. Med. Chem., 38: 4710-4713.
- Martinez, A.P., W.W. Lee and L. Goodman, 1964. Some 2-fluoroethylamines derived from hydrocinnamic acid, phenylpyruvic acid and DL-phenylalanine. Tetrahedron, 20: 2763-2771.
- Meiwes, J., M. Schudock and G. Kretzschmar, 1997. Asymmetric synthesis of L-thienylalanines. Tetrahedron Asymmetry, 8: 527-536.
- Mesaik, M.A., S. Rahat, K.M. Khan, M.I. Choudhary, M. Shahnaz, Z. Ismaeil, Atta-ur-Rahman, A. Ahmad and Zia-Ullah, 2004. Synthesis and immunomodulatory properties of selected oxazolone derivatives. BioOrg. Med. Chem., 12: 2049-2057.
- Pasha, M.A., K. Manjula and V.P. Jayashankara, 2006. Titanium dioxide-mediated Friedel-Crafts acylation of aromatic compounds in solvent free condition under microwave irradiation. Synth. React. Inorg. Metal. Org. Nano-Metal Chem., 36: 321-324.
- Pasha, M.A. and V.P. Jayashankara, 2006a. A comparitive study and development of an improved method for the reduction of nitroarenes into arylamines by Al/NH₄X (X = Cl, Br, I) in methanol under ultrasonic conditions. Ultrasonics Sonochem., 13: 42-46.
- Pasha, M.A. and V.P. Jayashankara, 2006b. An expeditious synthesis of 1,5-benzodiazepine derivatives catalysed by p-touenesulfonic acid. J. Pharmacol. Toxicol., 1: 573-578.
- Pasha, M.A. and V.P. Jayashankara, 2006c. Co(OAc)₂-Catalyzed tandem reaction: Synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones from β- keto ester, substituted aldehydes and urea/thiourea using microwaves under solvent free condition. Heterocyclic Commun., 12: 61-66.
- Pasha, M.A. and V.P. Jayashankara, 2006d. Efficient synthesis of N,N'-Disubstituted Urea/Thioureas catalyzed by iodine. Synthetic Commun., 36: 1787-1793.

- Pasha, M.A. and V.P. Jayashankara, 2006e. p-touenesulfonic acid (p-TSA) catalyzed efficient synthesis of bis(indolyl)methanes under grindstone method. J. Pharmacol. Toxicol., 1: 585-590.
- Pasha, M.A. and V.P. Jayashankara, 2006f. Synthesis of 1,5-Benzodiazepine derivatives catalysed by zinc chloride. Heterocycles, 68: 1017-1023.
- Paul, S., P. Nanda, R. Gupta and A. Loupy, 2004. Calcium acetate catalyzed synthesis of 4-arylidene-2-phenyl-5(4H)-oxazolones under solvent-free conditions. Tetrahedron Lett., 45: 425-427.
- Penalba, J., R. Puchades, A. Maquieira, S. Gee and B.D. Hammock, 2000. Development of immunosensors for the analysis of l-naphthol in organic media. Biosens. Bioelectron., 15: 99-106.
- Rao, P.S. and R.V. Venkataraman, 1994. Anhydrous zinc chloride catalysed synthesis of 2-phenyl-4arylidene-5(4H)-oxazolones. Indian J. Chem., 33B: 984-985.
- Ringold, H.J., B. Loeken, G. Rosenkranz and F. Sondheimer,1956. Steroids. LXXIII. The direct oppenauer oxidation of steroidal formate esters. A new synthesis of 17 α-hydroxyprogesterone. J. Am. Chem. Soc., 78: 816-819.
- Seebach, D., G. Jaeschke, K. Gottwald, K. Matsuda, R. Formisano and D.A. Chaplin, 1997. Resolution of racemic carboxylic acid derivatives by Ti-TADDOLate mediated esterification reactions-A general method for the preparation of enantiopure compounds. Tetrahedron, 53: 7539-7556.