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Abstract: Cardiovascular diseases are the most common health problems in developed and
developing societies and the vasodilating agents are one of the medicinal groups to improve
the life style of the patients suffering from the cardiovascular diseases. To study the
quantitative structure-activity relationship of a number of pharmacological agents, the
published data sets containing more than 10 vasodilating agents assessed on rat thoracic
aorta, were collected from the literature. Different physico-chemical and structural
descriptors of the compounds were computed using HyperChem® (12 descriptors) and
Dragon software (1479 descriptors). The more suitable descriptors (JThetv, Lop, SP20,
RDF020u, RDF030m and Rém) were selected using a combination of linear regression and
genetic algonthm methods. The artificial neural networks method was used for modelling -log
of vasodilating activity (pEC350) using selected descriptors. The statistical analyses were
performed using SPSS software and the average percentage deviation between calculated and
observed values for predicted data points studied in this work was 15.0 (=18.8).

Key words: Vasorelaxant activity, Artificial neural networks, Modelling, Structural
parameters

INTRODUCTION

In conventional drug discovery method usually many cycles of the structure-based design
processes are employed to find a compound that binds to a specific target with a very high level of
affinity. In this stage, the compound is still a long way far from being a drug on the clinical market. It
still has to pass through ammal and climcal trials, where factors that have not been considered, such
as toxicity, bicavailability and resistance, often determine its fate. On average, it can take 15 years and
350-500 million dollars for a drug to reach the market (Berkowitz and Katzung, 2004). Therefore, any
computational method(s) enabling scientists to predict a specific outcome would be invaluable and will
accelerate and reduce the cost of the drug process. Different statistical approaches have been proposed
to define models to identify factors that are predictive for the outcome of interest (Mecocci ef al.,
2002), such as biological activity.

Cardiovascular diseases are the main cause of death in most countries. Many scientific researches
have been done to find the possible causes, mechanisms and risk factors of these diseases. One of the
main problems in cardiovascular diseases is the involvement of vascular tissues through increasing
tonicity or losing their capacity to relaxation. Therefore, vascular reszarch has gained more attention
and vasodilator agents would be beneficial in treating cardiovascular diseases.
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Artificial Neural Networks (ANNs) are computer algorithms meant to mimic the highly
interactive processing of the human brain. Like the brain, ANNs recognize patterns, manage data and
most significantly, learn from observations. These statistical-mathematical tools are able to determine
the existence of a correlation between series of data and a particular outcome and when trained can
predict output data once given the input (Mecocci ef af., 2002).

Although in the past few years, ANNs have been used increasingly for the prediction of clinical
outcomes (Sherriff and Ott, 2004; Jefferson ef af., 1997), however they have not been employed in
prediction of vasorclaxant effect. The aim of this study is to select suitable predictors and check the
capability of ANNs for modelling the vasorelaxant activity of compounds. The accuracy of the
predictions was evaluated using collected data sets from the literature.

MATERIALS AND METHODS

Experimental Data

Experimental vasorelaxant potencies of seven sets of vasodilator agents evaluated on rat thoracic
aorta have been collected from the literature. The details of the collected data sets are shown in
Table 1-8.

Computational Method

The 2D structure of each compound was drawn, converted to 3D using HyperChem 7.0
(HvperCube, 2002) and pre-mimimized by Polak-Ribiere geometry optimization using MM®
(HvperChem, 2002). The structures were found by MM*, used as the starting point for re-
mimmization by Polak-Ribiere optimization using AM, semi-empirical and also quantum mechamical
methods. The complete energy optimized molecules were used to compute molecular descriptors.
From 1479 different 1D, 2D and 3D molecular descriptors calculated by Dragon software (Todeschini,
2003) including: constitutional descriptors, topological descriptors, molecular walk counts, BCUT
descriptors, Galveze topological charge indices, 2D autocorrelations, charge descriptors, aromaticity
indices, Randic molecular profiles, geometrical descriptors, RDF descriptors, 3D-MoRSE descriptors,
WHIM descriptors, GETAWAY descriptors, functional groups, atom-centered fragments, empirical
descriptors, properties descriptors with inter-correlation <0.99 were retained for further analyses. In
order to select suitable descriptors (the minimum number of appropriate structural parameters for
describing the biological activity) which will reduce the risk of chance correlations and over fitting to
the training set, a combination of Genetic Algorithm (GA) based Partial Least Square (PLS) and
Multivariate Linear Regression (MLR) were used. PLS is a well-known multivariate method, which
gives a stepwise selection for a regression model and is preferable for large data sets. It extracts
principle component-like latent variable from original independent variables (predictor variables) and
dependent variables (response variables). GA is a simulation method based on ideas from Darwin’s
theory which is developed to mimic some of the processes observed in natural evolution, which is an
efficient strategy to search for the global optimum solution. GA method has been successfully applied

Table 1: Summary of experimental data sets studied

Set No. N Serial No. Chemical group References

1 51 1-51 6-varied benzopyrans Uhrig et ai. (2002)

2 17 52-68 Furoxan Ovchinnikow et af. (2003)
3 25 69-93 1,8-naphthyridine Badawneh et al. (2001)
4 10 94-103 A-(cyclic amido)-2H-naphtho[ 1,2-b Jpyrans Chiou et af. (2002)

5 10 104-113 Others Magnon ef ai. (1998)

6 11 114-124 Flavonoids Calderone et ai. (2004)
7 13 125-137 1,4-benzoxazines Caliendo et al. (2002)
N: No. of data points
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Table 2: Molecular structure and experimental vasorelaxant potency of 6-varied benzopyrans

Ry
N 0
R
CH,
CH,

Serial No. R Jhetv Lop SP20 RDFO20u  RDF030m  Rém pEC50
1 H 1.73 0.64 0.10 1.93 4.25 0.41 5.43
2 CO-CH; 1.79 0.89 0.66 2.17 5.02 0.39 7.37
3 CO-CHs 1.79 1.07 1.97 2.46 227 0.40 6.63
4 CO-C¢Hy; 1.52 0.58 2.58 4.55 7.93 0.39 6.33
5 CO-Ph 1.56 0.58 5.05 2.28 775 0.39 6.61
6 CO-pOH-Ph 1.80 0.89 0.72 3.29 5.87 0.46 6.65
7 CO-3-firyl 1.56 0.60 4.27 1.79 7.73 041 6.49
8 CO-3-thienyl 1.55 0.62 7.22 2.62 761 0.37 6.40
9 CO-pOCH;-Ph 1.51 0.77 8.43 4.21 T.46 0.35 6.15
10 CO-pNO,-Ph 1.51 0.79 8.50 2.50 2.98 0.35 6.20
11 CO-oF-Ph 1.56 0.62 5.16 2.25 5.24 0.35 7.08
12 CO-0NO,-Ph 1.86 1.24 3.84 2.76 3.92 0.49 6.17
13 CO-oCH;-Ph 1.59 0.62 5.32 2.70 5.48 0.32 6.83
14 C0-0CF-Ph 1.54 0.80 4.04 2.47 10.10 0.47 6.76
15 CHO 1.77 0.87 0.28 2.54 4.66 0.43 6.91
16 C(=NOH)-NH, 1.75 1.07 2.02 3.50 6.54 0.39 5.99
17 CH=C{CN), 1.82 1.47 4.02 1.96 6.46 045 6.95
18 N-2,5-(CH;)2-pyrrolyl 1.48 0.64 2.28 2.77 7.47 033 7.27
19 C0-0,0'-F-Ph 1.56 0.64 5.28 2.14 5.08 0.37 6.97
20 CN 1.79 0.87 0.58 1.68 4.51 0.45 7.67
21 Br 1.18 0.56 1.79 4.19 7.38 0.46 7.84
22 CF; 1.27 0.53 4.48 4.23 6.14 0.37 7.61
23 Pyridyl 1.28 0.57 3.87 2.39 8.86 0.41 6.68
24 CS8-NH, 1.60 1.07 1.05 2.31 4.42 0.41 6.21
25 OCONH-Ph 1.25 0.57 6.68 321 5.16 0.36 5.30
26 OCH,-Ph 1.23 0.56 4.63 3.05 8.80 0.39 4.73
27 0OCO-Ph 1.59 1.07 1.89 4.25 227 0.48 5.20
28 0CO-CH; 1.58 1.07 2.68 5.13 229 0.45 5.60
29 OCH;-0,0F-Ph 1.51 1.22 3.57 5.56 4.19 0.52 5.27
30 OCH,-CO-Ph 1.28 1.32 1.37 11.63 3.40 0.33 5.05
31 080;- 1.94 1.19 0.00 3.37 4.92 0.00 4.82
32 O8O,F 1.60 1.07 2.68 5.08 2.81 0.42 7.95
33 080,CF; 1.60 1.07 1.82 2.27 8.16 0.51 6.53
34 080,Ph 1.26 0.59 7.12 3.34 11.22 0.35 7.63
35 080,CH; 1.79 1.24 1.23 3.87 6.97 0.47 6.60
36 080O,NH, 1.44 0.59 1.91 4.18 T.96 0.58 4.50
37 080,Cl 1.83 0.90 0.74 1.74 5.42 0.49 7.09
38 OCH,30.,Ph 1.82 1.07 1.24 3.94 8.29 0.45 7.42
39 SO,NH-C,H; 1.49 0.61 2.49 3.39 6.89 0.53 7.25
40 S0 NH-CH,-Ph 1.49 0.62 3.23 6.75 8.25 0.47 6.28
41 SO,NH, 1.78 1.23 3.99 3.50 6.75 0.44 7.16
42 SON-(CH:), 1.82 1.07 1.10 3.86 7.18 0.47 7.79
43 SO,NH-Ph l.64 0.62 346 2.30 711 0.46 8.51
44 SO N-(CH,CH,).-0 1.81 0.90 0.72 1.69 3.75 0.55 7.07
45 SO,NH-CH(CH;), 1.57 0.79 4.97 3.52 8.06 0.41 6.17
46 S0,-NH-CH; 1.73 0.68 0.12 2.14 2.4 0.45 7.75
47 S0,-Ph 1.69 0.87 0.50 3.76 4.46 0.39 7.76
48 SO,F 1.77 0.68 0.14 1.95 3.67 0.71 8.32
49 SO;N; 1.71 0.90 0.68 1.91 6.27 0.51 7.79
50 OH 1.58 0.55 3.46 3.01 6.12 0.38 5.44
51 OCH; 1.54 0.60 4.02 2.55 822 0.39 6.65
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Table 3: Molecular structure and exp erimental vasorelaxant potency of Furoxan
0O -
/ \ + /0
N

N\

R
N N
+ \N
N

d/ ~ 0/

Serial No. R Jhetv Lop SP20 RDF020u  RDF030m  Rém pECS50
52 CH; 1.36 0.75 3.16 1.04 2.83 0.24 6.82
53 C:H; 1.23 0.47 7.27 1.59 T7.36 0.27 6.30
54 CONH, 152 1.07 3.76 2.97 10.92 0.23 6.59
55 CONHCH; 1.54 1.34 6.21 4.99 10.53 0.25 6.82
56 CONHnPr 1.54 1.81 12.90 4.76 10.78 0.31 7.38
57 CONHnBu 1.53 2.01 14.44 5.57 12.31 0.31 7.00
58 CONH-cy clohexcy] 1.07 0.53 9.67 6.66 14.95 0.53 7.24
59 CO-piperidyl 1.10 0.55 7.67 5.57 9.06 0.54 6.40
60 CONH{(CH,),0H 1.52 1.81 11.06 7.58 12.04 0.41 6.59
61 1.98 2.11 0.73 2.88 1.89 0.66 7.66

NH,
+ \
/ N \ /N
o 0

62 CONH, 1.60 1.07 2.69 5.08 3.10 0.41 4.82
63 CONHCH; 1.95 1.47 0.00 4.23 4.79 0.07 4.96
64 CONHnPr 1.89 1.95 0.46 4.28 4.76 0.14 5.23
65 CONHnBu 1.86 215 1.18 4.04 512 0.15 5.26
66 CONH-cy clohexyl 1.50 0.70 0.31 4.95 7.82 0.29 5.51
67 CO-piperidyl 1.56 0.73 0.05 4.76 6.10 0.28 4.10
68 CONH{(CH,),0H 1.85 1.95 0.36 5.33 4.75 0.17 5.11

to feature selection in QSAR analyses (Tang and Li, 2002). Moreover, an approach combining GA
with PLS (GA-PLS) has been proposed for variable selection in QSAR studies (Daren, 2001). Here,
we employed GA-PLS method of Leardi using MATLAB software (Demuth and Beale, 2000) to select
the variables sigmficantly contributing to the prediction of activity (Leardi and Lupianez, 1998,
Leardi, 2000).

Before using GA-PLS method, the highly correlated descriptors were excluded and the remained
(517 Dragon and 12 HyperChem descriptors) were used as input data to a combination of GA-PLS
and stepwise multiple linear regression methods. More than 20 dragon descriptors selected using
GA-PLS and 12 HyperChem descriptors were studied using stepwise multiple linear regression and
cross correlation procedure in order to investigate their inter correlation. The descriptors showed higher
correlation with experimental values and lower intercorrelation with each other have been selected as
suitable predictors. The selected descriptors were: Jhetv (Balaban-type index from van-der Wals
weighted distance matrix topological descriptors), Lop (Lopping centric index topological descriptors),
SP20 (shape profile No. 20 Randic molecular profiles), RDF020u (Radial Distribution Function-
2.0/unweighted RDF descriptors), RDF030m (Radial Distribution Function 2.5/weighted by atomic
masses RDF descriptors) and Rém (R autocorrelation of lag 6/weighted by atomic masses GETAWAY
descriptors). The numerical values of the selected descriptors are listed in Table 2-8.
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1,8-naphthyridine derivatives

R
R3 o 3
1\|I+
A o X TR
R, N/ N/ R, R; N/ N/ R,
All except 84 and 85 84 and 35
Serial No. R1 R2  R3 Jhetv. Lop  SP20  RDFO20u  RDF030m  R6m  pECSO
60 CEP CEP NH, 110 128 1028 12.43 5.46 025 444
70 CEP CEP NHAc 114 138 1519 13.50 8.37 022 3.02
7 CEP  OH NH, 128 120 063 10.13 3.30 035 313
72 FP OH NH, 143 082 035 10.02 3.70 033 359
73 CEP  OH NHAc 120 136  10.64 8.06 6.17 031 403
74 CEP ¢l NHAc 130 136 976 8.3 6.92 030 373
75 PIP  CEP NHAc L1710l 882 10.14 5.7 023 460
76 CEP  SH  NH 130 120 080 9.55 3.26 043 378
77 CEP  H  NH, 125 117 86l 8.28 2.46 021 468
78 CEP OH OH 128 120 075 9.0 3.42 037 3.53
79 CEP ol Cl 137 120 967 9.0 4.00 0.62 310
80 CEP  OCH, OCH, 133 061 559 6.91 47 045 505
81 CEP  H  NHAc 126 135 206 10.51 418 031 692
82 PIP PP OH 133 038 299 7.7 6.3 028 452
83 CEP PP OH L16 101 865 9.79 6.35 0.20 520
84 PIP PP OH 136 070 436 8.76 5.93 032 545
85 CEP PP OH 122 114 854 9.98 5.30 031 551
86 CEP PP  OCH, 116 108 1010 11.35 6.08 026 434
87 CEP  CEP Cl L1l 128 835 12.22 6.20 037 467
88 PIPZ PP  NH 133 038 381 11.07 5.20 0.24 495
89 PIPZ H  NH, 150 046  3.80 9.18 2.76 022 468
90 PIPZ  OCH, OCH, 146 086 547 10.35 2.62 024 375
o1 PIPZ  OCH, NH, 151 076  3.73 10.24 2.66 0.25 415
02 PIPZ PP  OH 132 038 342 10.82 5.88 029 584
03 PIPZ _PIP  OCH 130 0.56 448 12.10 5.51 0.25 519

Table 5: Molecular structure and experimental vasorelaxant potency of 4-(cyclic amido)-2H-naphtho[1,2-b]pyrans

(s

Q

o R, R R R

o o ‘ o
94,95 101,103 96, 97 98,99, 102
Serial No. R2 R3 JThetv Lop SP20 RDFO20u RDFO30m Rom pECS50
04 NGO, OH 1.60 0.85 2.32 4.88 10.51 0.54 6.59
o5 CN OH 1.64 0.84 2.35 4.41 a11 0.49 5.63
96 NGO, OH 1.59 0.83 2.71 5.78 10.79 0.54 6.66
o7 CN OH 1.63 0.82 2.88 5.28 a.46 0.49 6.13
a8 NGO, OH 1.61 0.83 2.80 5.89 10.65 0.56 6.41
o0 CN OH 1.65 0.82 2.60 3.97 7.89 0.52 5.88
100 CN A3 4 1.66 0.81 2.57 2.62 5.73 0.45 5.99
101 CN A4 1.67 0.80 2.93 2.07 5.09 0.48 6.47
102 CN H 1.62 0.81 2.29 3.20 5.71 0.45 5.40
103 --- --- 1.74 0.91 0.64 4.36 8.93 0.46 7.19
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Table 6: Molecular structure and experimental vasorelaxant potency of miscellaneous compounds

Serial No. Brand name Jhetv Lop SP20  RDF020u

RDF030m R6m pECS0

CH,

»e

HC
C/
me N,
104 Diltiazem 1.69 141 4.29 863 10.58 046 697
CH,
I,
BC Vi
i N
|
H,C CH’
CH,
105 Verapamil 1.75  1.10 13.35 14.18 7.08 0.26 7.20
cl
CH, A
L
Hjy SN
N+
6~ o
106 Nitemdipoine 206 1.63 3.52 5.62 345 047 815
CH,
o
0
| N O\CH,
N o
107 Papaverine 166 1.03 5.98 10.70 271 0.30 6.39
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Table 6: Continued

Serial No. Brand name Jhetv Lop SP20 RDF020u  RDF030m R6m pECS0
108 Aprikalim 231 1.16 0.02 6.05 846 031 670
Z /N\ NN
N
\ N
N
(o]
Cl
109 Bimakalim 203 087 086 2.31 4.40 043 781
C
o H,
CH,
== : OH
N~ H
N
Q
110 Levcromakalim 1.85 091 (.68 2.36 6,71 046 6.98
CH,
H,
NH\\
Hy | N
CH, \ H,0
| /N
111 Pinacidil 220 214 09 6.29 4.39 033 679
0
vl
N
+
\N \
|l NI
N
"'-...‘o
112 Linsidomine 1.22 060 0.03 7.22 2.52 013 7.06
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Table 6: Continued

Serial No. Brand name Jhetv. Lop  SP20 RDF020u  RDF030m Rém pEC50
I, I,
N N.
0% \O/Y\o/ \0‘
0
o +
NSV
g
113 Nitroglycerin 1.98 211 073 2.88 1.89 0.66 8.07

Table 7: Molecular structure and experimental vasorelaxant potency of flavonoid derivatives

Serial No. Brand name Jhetv. Lop SP20 RDF020u  RDF030m R6m pECS0
0
\CH,
HO o}
OH 0
114 Acacetin 165 087 563 5.69 3.65 0.19 499
OH
HOW/‘/ !0
OH 0
115 Apigenin 1.72  0.68 435 4.09 3.62 0.27 5.02
H go
OH 0
116 Chrysin 1.75 064 227 3.05 3.63 0.26  4.80
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Table 7: Continued

Serial No. Brand name Jhetv Lop SP20 RDF020u  RDF030m R6m pECS0
OH (lng
(4]
HO (3] Y
OH (o]
117 Hesperetin 1.59 089 572 6.06 3.47 0.25 4.86

OH 0
118 Luteolin 171 070 467 3.78 3.60 0.29 497
HO 0
OH 0
119 Pinocembrin 168 064 229 384 3.27 0.25 4.80
(4]
0
OH
120 4-hydroxyflavanone 1.5 0.58 335 239 1.45 0.21 476
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Table 7: Continued

Serial No. Brand name Jhetv Lop SP20 RDF020u  RDF030m R6m pECS0
OH (4]
0
121 S-hydroxyflavene 175 0.58 1.86 285 3.68 0.21 441
0

jae]
)
o

122 é-hydroxyflavanone 1.66 079 2.67  3.21 4.58 021 443
0
HO ! 0
123 T-hydroxyflavone  1.62  0.58 342 2.37 1.44 020 487
CH,
o/ o
0
124 S-methosxyflavone 167 0.58 201 1.60 1.93 0.28 438

ANN Calculations

All the ANNs calculations were carried out using Matlab mathematical software (Demuth and
Beale, 2000), with artificial neural network toolbox for windows running on a personal computer
(Pentium IIT 640 MHz). The networks were generated by using the calculated molecular descriptors
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Table 8: Molecular structure and experimental vasorelaxant potency of 1, 4-benzoxazines

0 R
R'
)
|
(CHn

h—O—C,H,

0
Serial No. X 0 R=R' Jhety Lop SP20 RDF020u RDF030m Rém  pECSO
125 45-dihydro-1 3-thiazole 2 H 145 156 229 5.90 5.20 037 446
126 cl 2 CH, 174 177 LTS 4.24 2.38 040  4.00
127 4,5-dihydro-1 3-thiazole 2 CH, 152 158 327 4.83 6.28 033 411
128 cl 3 H 150 198 198 543 211 041 415
129 NO, 3 H L6l 202 546 5.67 2.79 035 432
130 CN 3 H  Lsd 203 511 5.36 2.27 020 420
131 4,5-dihydro-1 3-thiazole 3 H 141 171 413 6.43 6.24 036 449
132 H 3 CH 163 1.9 419 435 274 021 423
133 CH, 3 CH, 168 193 576 4.45 2.70 023 428
134 cl 3CH, 168 193 620 402 2.79 036  4.57
135 NO, 3 CH, L70 1.96 742 452 2.80 028 414
136 N 3 CH L7 199 813 5.17 3.60 028 470
137 4,5-dihydro-1 3-thiazole 3 CH, 148 172 687 5.83 5.14 028 472

Table 9: The details of the experimental and predicted pEC50 of prediction set for all data sets, the individual relative

deviation TRT)) and Average Relative Deviation (ARD) values

Serial No. Set No. Experimental Predicted TRD
1 1 5.43 6.07 11.7
4 1 6.33 6.27 0.9
7 1 6.49 6.85 5.5
10 1 6.20 6.24 0.6
13 1 6.83 6.32 7.4
16 1 5.99 6.77 13.0
19 1 6.97 6.43 7.7
22 1 7.61 5.73 24.7
26 1 4.73 6.15 30.1
29 1 5.27 6.16 16.9
32 1 7.95 5.66 28.9
35 1 6.60 7.00 6.1
38 1 7.42 7.14 3.8
41 1 7.16 7.07 1.3
44 1 7.07 6.86 3.0
47 1 T.76 5.94 234
50 1 5.44 6.27 15.3
53 2 6.30 6.09 33
56 2 7.38 6.55 11.2
59 2 6.40 6.37 0.4
61 2 7.66 6.90 9.9
63 2 4.96 5.10 2.9
66 2 5.51 5.80 5.3
70 3 3.02 4.71 56.0
73 3 4.03 5.11 26.8
76 3 3.78 4.96 31.3
79 3 3.10 6.31 103.6
82 3 4.52 5.14 13.7
85 3 5.51 4.93 10.5
88 3 4.95 4.62 6.6
91 3 4.15 4.36 5.1
95 4 5.63 6.89 22.3
98 4 6.41 6.96 8.5
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Table 9: Continued

Serial No. Set No. Experimental Predicted IRD
101 4 6.47 6.75 4.4
106 5 8.15 6.96 14.6
109 5 7.81 7.09 9.3
112 5 7.06 2,91 58.8
114 6 4.99 5.06 1.4
117 6 4.86 5.17 6.3
120 6 4.76 4.25 10.8
123 6 4.87 4.28 12.0
127 7 4.11 5.37 30.6
130 7 4.20 4.01 4.5
133 7 4.28 4.20 1.9
136 7 4.70 4.91 4.4

ARD 15.0

Table 10: The details of the experimental and predicted pECS50 of prediction set for 1 data set, the Individual Relative
Deviation (IRD) and Average Relative Deviation (ARD) values

Serial No. Set No. Experimental Predicted IRD
1 1 5.43 6.48 19.4
4 1 6.33 6.71 6.0
7 1 6.49 6.57 1.2
10 1 6.20 6.76 9.0
13 1 6.83 6.68 2.2
16 1 5.99 6.50 8.5
19 1 6.97 6.64 4.7
22 1 761 6.61 13.1
25 1 5.30 6.62 24.9
28 1 5.60 6.54 16.7
31 1 4.82 6.18 28.2
34 1 T.63 6.86 10.1
37 1 7.09 6.64 6.3
40 1 6.28 6.73 7.2
43 1 851 6.64 21.9
46 1 775 6.62 14.5
49 1 179 6.81 12.6

ARD 12.2

as inputs. Vasodilating potency (pECS0) on rat aorta was the output. A 3 layer network with
sigmoidal transfer function in hidden and output layers was designed by using back propagation
learning algorithm. The transfer function possesses minimum and maximum values of 0 and 1,
respectively. The inputs and outputs were normalized between 0.1 and 0.9, which allows the network
to slightly exceed the minimmum and maximum values that were given in the original data file
(Despagne and Massart, 1998). The Mean Square Error (MSE) was used to identify the traimng
process of the network and computed using:

N
_1 o2
MSE—ﬁéw—y)

where, N denotes the number of experimental data employed in the training process of the network,
and are target and output values.

Statistical Analysis

To test the accuracy of the trained network, the vasorelaxant activity data was randomly divided
yinto ¥ two subsets, namely training {92 compounds) and prediction (45 compounds). All data points
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in training subset were fitted to the network and the back-calculated activities were compared with the
corresponding experimental values and the Average Relative Deviation (ARD) was computed as an
accuracy criterion by:

ARD — @Z ‘Calculatedf Observed|
N Observed

where N is the number of data points. The ARD is comparable with experimental RSD value and by
this it is possible to compare the calculation error with experimental error for repeated experiments.

The individual relative deviation (IRD) was computed and summarized in Table 9 and 10 using
following equation:

‘Calculated - Observed|
Observed '

IRD =100

RESULTS AND DISCUSSION

The features of the network i.e., number of epochs, learning rate, momentum, transfer function
and number of neurons in the hidden layer were optimized and the selected number of epochs was
found to be 10000. The fraining process was stopped manually when the Mean Square Errors (MSE)
of the prediction set remained constant after successive iteration. Since there are several local
mimma where the model could arrive, the algorithm ran from different starting values for initial
weights to find the optimum, but nearly the same results were obtained. The training function
used here was TRAINGDM, iteration rate was 0.25 and other training parameters used in this work
were default values.

Asnoted in statistical analysis section, all the experimental pECS50 data was divided into traiming
and prediction prediction. The ANN was trained using training data set (N = 92) and then the pEC50
of the prediction set were predicted and showed in Table 9. The lowest IRD (0.4%) was observed for
compound number 59 from furoxan derivatives and the highest IRD (103.6%) for compound nmumber
79 from 1,8 naphthyridine denvatives. The ARD (£3D) for 45 predicted pEC50 values using the
trained network was 15.0 (£18.8). From mechanisms of actions point of view, the predicted data
possess various mechanism of actions which discussed in the literature. As examples, benzopyran
denivatives bind to the potassium channel receptors and differences in pEC., values are due to a
variation of binding affinity, drug access to the receptor biophase (Lemoine ef al., 1999) and
preorientation of the drug in the way that it approaches the receptor (Uhrige e al., 2002). Other
studies showed that for some furoxan derivatives NO" (free radical molecule nitric oxide or one of its
bioequivalent forms) is involved in their activity (Ovchinnikov ez af., 2003). For benzoxazine
denvatives, Caliendo ef af. (2002) hypothesized that hypothesized that different types of potassium
channels are involved in their vasorelaxant activity. They concluded that the complexity of the
pharmacological data, mostly results from the involvement of different receptors each to different
extent in vasorelaxant activity (Caliendo eral., 2002). In addition we included some currently
used drugs in our dataset (i.c., Diltiazem and Nitrendipine) which are caleium channel blockers
(Magnon ef af., 1998).

It is obvious that the descriptors can not deal with differences in mechanisms of actions. To
exclude this differences and also the inter-laboratory variations from the calculations, a set of 51
compounds which were similar in mechamsm of action and reported by a single Laboratory, was used
to carry out the same calculations. In other words, 34 compounds were used as training set (the
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Fig. 1. The plot of the predicted vasorelaxant activity of compounds of prediction values
versus experimental values
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Fig. 2: The relative frequencies of IRD values sorted in three subgroups for prediction set

networks were similar in all properties except hidden layer which were 3 and iteration rate which was
0.15) and the pECS50 of the remaining 17 compounds were predicted. The results were listed in
Table 10 and the TRD range was 1.2-28.2 and the ARD value was 12.2 (+7.9).

In order to evaluate the performance of the ANNs, the predicted pECS0 by the ANN was plotted
against the experimental values for the prediction set (Fig. 1). It seems that this method is able to
predict the requested response with acceptable error range. Although the observed correlation
coefficient (R) was 0.6 but we found that omitting three outliers, i.e., compound numbers 70, 79 and
112 in Table 9, leads to better correlation (R = 0.8). These findings reveal the capability of ANN model
for predicting pEC50. The IRD distribution of the predicted data was shownin Fig. 2. The IRDs are
sorted in three subgroups, i.e., <10%, 10-20% and >20% showed that the probability of pEC50
prediction using the proposed method with IRD<10% is about 0.55 and the corresponding probability
for IRD>20% is about 0.22.

CONCLUSIONS

One ANN model with 6 descriptors was used to predict the vasorelaxant potency for
137 vasorclaxant agents. This study reveals the capability of the ANNs in modelling and its
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potential for use in other research areas of medical sciences. Such a prediction tool could assist
medicinal chemists for designing compounds with higher vasorelaxant activities and save time
and cost in drug discovery studies.
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