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Abstract: Hydrology and climatic monthly data's influence on training of Artificial Neural
Networks (ANNs) for monthly rain fall prediction is investigated. For improved computed
performances, efficiencies of the Conjugate Gradient (CG) and Levenberg-Marquardt (L-M)
training algorithms are comparad. The rain fall-run off influence is studied for a watershed
in Northern Iran, representing a continuous rain fall-run off with stream flow regime
occurring. The used data in ANN was hydrometric and climatic monthly data with 31 years
duration from 1969 to 2000. For the mentioned model 27 year's data were used for its
development but for the validation/testing of the model 4 years data was applied. Based on
the results, the L-M algorithm is more efficient than the CG algorithm, so it is used to train
six ANNs models for rain fall-runoff prediction at time step t+1 from time step tinput. The
used network in this study was MLP with B.P. (back propagation) algorithm. Model 1 uses
enabled rain fall data as input dimension with use tree station, Model 2 uses enabled rain fall
and average temperature, Model 3 uses enabled rain fall, average temperature and stream
flow at time step t-1 and Model 4 uses enabled rain fall and stream flow at time step (t, t-1,
t-2), Model 5 uses enabled rain fall and stream flow at time step (t, t-1, t-2.t-3) Model 6
uses enabled rain fall, average temperature and stream flow at time step (t-1, t-2). Validation
stage Root Mean Squarz Error (RMSE), Root Mean Absolute Error (RMAE) and
Correlation Coefficient (R} measures are: 0.07, 6x107, 0.99 (Model 1), 0.1, 9107, 0.99
(Model 2); 0.01, 9x10~%, 1(Model 3); 0.005, 6x107%, 1{(Model 4); 0.001, 0.710°, 1 (Model
5);,0.001, 6x107°, 1 (Model 6) and, respectively. The influence of rain fall and stream flow
at time step (t, t-1, t-2) on improved Model 4 performance is discussed.
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INTRODUCTION

Runoff data is the important information for the design and planning of many water resources
engineering projects. Many hydrologists devote themselves to develop rainfall-runoff models to
estimate runoff. The rainfall-runoff process, which involves many mechanisms, is known as a highly
complicated and nonlinear phenomenon. Difficulties existin the modeling of the rainfall-runoff process.
Thus, an accurate and easily-used rainfall-runoff model that can appropriately model the rainfall-runoff
process is of strong demand. In the rainfall-runoff process, there is a temporal dependency between
the rainfall and the runoff. The temporal dependency can be described using the linear system model
(Chow ef af., 1988):

QM= [ 1ot -y (0
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Output at time
Input at time
Impulse response function of the system

In the modeling of the rainfall-runoff process, the excess rainfall is the input of the system, the direct
runoff is the output of the system and the Instantancous Unit Hydrograph (IUH) is the impulse
response function. From Eq. 1, the output at time t is produced by the convolution integral of the

impulse response function and the input up to time t. In actual applications, the discrete form of
Eq. 1 is more practical. The discrete form of Eq. 1 is:
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Network output (i, 1/4 1, 2, v, S)

Bias term (i, 1/4 1,2, v, S)

Computed mean absolute error

Computed root mean absolute error (RMAE)
Computed root mean squared error (RMSE)
Transfer (activation) function

Function predicting stream flow at time t+1 based on information of time t
Funetion to be minimised

kth stage first derivative of G(x)

Sample size

Sum of individual weights (inputto f) (i, 1/4 1,2, v, 8)
Darzikola rainfall at time step t (mm})

Sangedeh rainfall at time step t (mm)

Kaleh rainfall at time step t (mm)

Network input (i, 1/4 1,2, v, 8)

Observed air temperature (1C)

Search vector

Maximum air temperature (1C)

Minimum air temperature (1C)

Scaled temperature

Valikbon predicted stream flow at time step t (m4/s)
Valikbon observed stream flow at time step t (m,/s)
my, observed stream flow value (m,/s)

m,, simulated stream flow value (m,/s)

Mean observed stream flow value (m,/s)

Number of inputs

Number of neurens

Darzikola average air temperature (1C)

Sangedeh average air temperature (1C)

Matrix of weights of S neurons (rows) and R inputs {columns)
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W © Anelement of matrix w (i 1/4 1,2, y, S;j1/4 1,2, v, R)
X, . Current estimation point to be minimized at k,, stage
- : let1th stage estimated point

ak . kth stage learning rate

ADG{x) : Rate of change of G{x)

ADxk  : kth stage rate of change of xk

My . kth stage trial value to mimimise G(X)

where, Qt is the direct runoff, Pt i+1 is the excess rainfall at time t- 1 + 1 and Ui is the IUH of
discrete form. The L in Eq. 2 is a crucial term. The value of L indicates the duration of the influence
of an excess rainfall lasting. In other words, L indicates the extent of the temporal dependency between
the rainfall and the runoff. The temporal dependency between the rainfall and the runoff plays a
significant role for modeling the rainfall-runoff process. Therefore, the value of L should be determined
carefilly. In recent years, Artificial Neural Networks (ANN) are widely used for modeling the rainfall-
runoff process. ANN can model the highly nonlinear phenomenon in a simple way. Two different
tvpes of ANN are frequently used to model the rainfall-runoff process. One is the static networks
including the multilayer perceptron {(MLP) and the Radial Basis Function network (RBF) (Lin and
Chen, 2004; Rajurkara et af., 2004). The other one is the dynamic network such as the real-time
recurrent network (Chang et ef., 2002, 2004; Chiang er /., 2004). One reason of the popularity of
ANN is that it is embedded with an algorithm for estimating the synaptic weights of the neurons
(1.e., the parameters of ANN). That is, ANN based rainfall-runoff models can be calibrated using the
embedded algorithm easily. Another reason of the popularity of ANN based rainfall-runoff models is
that the model’s configuration can be adjusted according to the characteristics of watersheds. These
are two advantages of ANN based models over the traditional models. In the theory of ANN, once the
temporal dependency between the input and the output of a system is presented, then it is said that
the system has memory (Haykin, 1999). In this study, the term memory is used to indicate the
temporal dependency between the rainfall and the runoff for prediction. The rainfall-runoff process
is a typical svstern that has memory. The magnitude of the temporal dependency between the rainfall
and the runoff is referred to as the memory length of the rainfall-runoff process. In the ANN
based rainfall-runoff models, the role of the memory length is analogous to that of the 1 in Eq. 2. When
one uses ANN to model the rainfall-runoff process, the construction of the memory and the evaluation
of the memory length of the rainfall-runoff process are important concerns. While many studies have
investigated different approaches including artificial neural networks for infilling data gaps of stream
flows. Serial correlations of daily or monthly stream flows provide a basis for successful application
of simple statistical methods. Conversely, the non stationary behavior of precipitation patterns does
not allow a proper application of simple linear regression or interpolation methods (Creutin ef af.,
1997). Consequently, various statistical methods have been proposed for infilling missing stream flow
values including ANN approach (Khalil ef &f., 2001). In the rainfall modeling context used synthetically
generated rainfall storms to calibrate an ANN model and generated plausible rainfall events. Luck ef al.
(2000) identified an optimal set of spatio-temporal inputs for an ANN rainfall forecasting model using
15-min-intervals rainfall records. Recently, Abebe ef af. (2000) compared fuzzy rule-based and ANN
models for reconstructing missing precipitation events. In the last 15 vears, ANNs have shown
promising potential in various hydrologic applications (ASCE Task Committee, 2000a, b; Maier and
Dandy, 2000). More recent hydrologic applications of ANNs are summarized in Cigizoglu (2005),
Cigizoglu and Kisi (2006), Coulibaly ef af. (2005) and Dibike and Coulibaly (2006). By considering
complexity of the phenomena involvead there is a strong need to explore alternative solutions through
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modeling direct relationship between the input and output data without having the complete physical
understanding of the system. While data-driven models do not provide any information on the physics
of the hydrologic processes, they are very useful for river flow forecasting where the main concern is
accurate predictions of runoff (Nayak e @/., 2005). Due to the ability of ANNs in modeling complex
nonlinear systems, successful applications of these method in water resources modeling have been
widely reported, such as for rainfall-runoff simulation (Campolo ef af., 1999a, b;, Sudheer er al., 2002;
Chang et /., 2002; Jain and Srimivasulu, 2004), river flow forecasting (Imrie ef @f., 2000; Hu ef ai.,
2001; Kumar ef af., 2004) and rainfall forecasting (Kuligowski and Barros, 1998; Luk ez af., 2001,
Rami’rez er al., 2005). And Comparison of neural nor infilling missing daily weather records
(Coulibaly and Evora, 2007) The study focused on Comparative analysis of training methods and
different data's for rainfall-runoff predication with use ANNs. In this respect, computational
efficiencies measured in terms of better achieved accuracy and convergence spesd of the
Lavenberg-Marquardt (1.-M) and Conjugate Gradient (CG) algorithms in network training are evaluated
and compared. Furthermore, the effects of enabling/disabling of stream flow, temperature, monthly
rainfall and (as parts of the input dimension) on improved rainfall-runoff predication are also evaluated.
A watershed system with continuous regime of stream flow in Northern Iran is used as a case study.

MATERIALS AND METHODS

Overview of Artificial Neural Networks

An Artificial Neural Network (ANNs) is a mathematical model which is able to emulate the
behavior of the human brain. An ANN model is appealing to use since it has the capacity to extract
patterns from the observed data without assumptions about the underlying relationships. Such non-
linear models can approximate unknown mappings and their derivatives by a three-layer structure;
input, hidden and output layers (Hornik ef af., 1989). The feed forward architecture, also know as the
multi layer preceptron, MLP is the most popular net-work architecture used by researchers in
hydrology for stream flow modeling (Jain ef af., 1999; Maier and Dandy, 2000; Gaume and Gosset,
2003). The topology of feed forward ANNs consists of several nodes as the basic umt of information
processing, which resemble the structure of newrons. The nodes can be linked together through a
number of layers, identified as input, hidden and output layers. The hidden layer itself can be a single
layer or a multilayer design. Figure 1 shows a single layer network with S neurons (nodes). Input into
the network is represented by pl, p2, v, pR. The network outputs are represented by al, a2, ..., aS.

R =Number of
elements in
input vector

8 =Number of
neutons in
layer

Fig. 1. A feed forward artificial neural network (Hagan ez af., 1996)
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Every input is connected to all of the neurons. As illustrated by Fig. 1, the single layer includes the
weight matrix, summers and the bias terms where, pl. p2, v, pR network inputs; wi, j., i=1, 2, ...,
S:j=1,2, ..., R) element of matrix of weights of S neurons and R inputs; bl, b2, ..., bS bias terms;
nl, n2, ..., nS sum of individual weights and bias terms (input to f); f transfer function; al, a2, ..., a8
network outputs bl, b2, ..., bS and the activation function also called transfer function, f. The level
of information processing between nodes is evaluated by a weight, wi, j, which is an element of the
weight matrix w, consisting of S rows (neurons) and R columns (inputs). In a preceptron the nodes use
these weights to calculate a linear combination of the information that comes to them to which a
constant biasbi 1 =1, ..., 8)is added and is identified as ni. Each calculated values of ni is an imput
into the activation function. The activation function is used to take any real input into an enclosed
subset. The result of this operation is the output of the node, which will become an input to another
node situated in the next layer. The weights associated with the connections that arrive at a node,
including the bias, are the coefficients of the linear combination. Generally, the same activation function
is used for all nodes of each layer, but it is possible to use a different activation function for each node.
For a feed forward ANN, the available data are usually divided into sub-sets for use in the
training/calibration and validation/testing stages. In the training stage the network learns the process
of developing output values from the input set. Network learning is achieved by using a learning
algorithm and adjustment of the designated weights, used in conjunction with the traimng data set. The
testing stage constitutes the final performance evaluation of the developed ANN model by using
the testing data set. This phase evaluates the capability of the model for producing acceptable
output values through previously established input-output relationships. Network performance is
checked to avoid over-fitting or over-training. A separate set of data maybe needed for evaluation of
over-training situation.

Network Training Algorithms

The Back-Propagation (BP) algorithm has been the most commonly used training algorithm.
Rainfall-rmnoff modeling with limited data. In a study by Chiang et a. (2004), the CG algorithm was
found to be superior when compared with the BP algorithm in terms of the efficiency and effectiveness
ofthe constructed network. Tn more recent studies the L.-M algorithm is also being used because of its
superior efficiency and high convergence speed {Anteil and Lauzon, 2004; de Vos and Rientjes, 2005).
All commonly used algorithms for network training in hydrology, i.e., BP, CG and L-M algorithms
apply a function minimization routine, which can back propagate error into the network layers as a
means of improving the calculated output. The follow-ing shows the comresponding equation
(Hagan et al., 1996):

Ay =Yn — Wa =Py (3)

where, x, is the current estimation point for a function G{x) to be minimized at the kth stage, p, is the
search vector and a, is the learning rate, a scalar quantity greater than zero. The learning quantity
identifies the step size for each repetition along p,: computation of p, will depend on the selected
learning algorithm. In the present research, the L-M algorithm is compared with the CG algorithm.
When compared with the steepest gradient and the Newton’s methods, the CG is viewed as being
faster than the steepest gradient, while not requiring the complexities associated with calculation of
Hessian matrix in the Newton’s method. The CG is something of a compromise; it does not require
the calculation of second derivatives, vet it still has the quadratic convergence property. It converges
to the mimimum of a quadratic function in a finite number of iterations (Hagan ef af., 1996). On the
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other hand, the L-M algorithm is viewed as a very efficient algorithm with a high convergence speed.
In correspondence with Eq. 1 the following equation is used as the function minimization routine in
the L-M procedures (Hagan et al., 1996):

Tea =% — A8y 4

in which g, and A, are the first and the second derivative of G(x) with respect to x. The function
minimization routine is further described as Hagan et al. (1996)
1 5
T = K ‘_,,_\TG("/,) )

2p,

In the above equation, if the value of coefficient m, is decreased to zero the algorithm becomes
Gauss-Newton. The algorithm begins with a small value for p, (e.g.. u, =0.0001). If a step does not
yield a smaller value for G(x), the step is repeated with u, multiplied by some factor greater than one
(e.g.. 10). Eventually G(x) decreases. since we would be taking a small step in the direction of the
steepest descent. If a step does produce a smaller value for G(x). then mkis divided by the specified
factor (e.g.. 10) for the next step. so that the algorithm will approach Gauss-Newton, which should
provide faster convergence. The algorithm provides a neat compromise between the speed of Newton's
method and the guaranteed convergence of steepest descent.

Study Site Description

The purpose of this section is to briefly describe the study area and the structure of the utilized
ANN. The proposed methodologies were applied to the upper sub-watershed of the Kasilian
watershed system (Fig. 2) for the evaluation of the predication rain fall -run off. Modeling capabilities
of the CG and the L-M algorithm were compared in terms of their abilities in network training. The
influences of monthly rainfall. stream flow and air temperature data as different input dimensions were
also evaluated. The study area of Kasilian watershed with a drainage area of 3360 km’ is located in
Mazandaran province, Northern part of Iran, with an important role for the agricultural and industrial
activities.

Acmbijn

Turkannistan

Afghanistsn

Pakistan

Saudi Arabia

Mazandaran
! Wather
lran

5 Station
: River

:' Kaslin

Fig. 2: Geographical location of the study area in Iran
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The sources of water are mostly originated from snowmelt, springs and also individual rain events.
In spite of a permanent flow system, the rainy season is limited to 9 months duration (October-April)
with a mean annual precipitation of near to 800 mm. Rainfall events are usually occurred during the
last days but rainfall durations of 1 day or less is also recorded. Monthly optimized precipitation
occurs in August to September and monthly minimum precipitation recorded in February to March.
This watershed is included two sub-basin of Talarsarband and Tilehsiah which are following to the
north direction. Figure 2 shows the location of the hydrometric stations of the whole basin. The used
data with 31 years duration (1969-2000) for this study included monthly rainfall and discharge of
Sangedeh, Darzikola and Keleh stations.

Data Preparation

The used discharges data of Kasilian basin were limited with a 31 year duration, which was used
for a purposed model development to considering of different combinations of inputs variables, e.g.,
rainfall, stream flow and average air temperature. For all of the mentioned models available data were
separated in 80% for training and 20% for validation. Since in this research the number of data points
was more than the number of used parameters by the network (weights and biases), therefore
additional analysis for the detection of network overtraining was seemed dispensability. So data could
be divided in two parts for use in the training and validation stages, i.¢., cross-validation analysis to
stop overtraiming was not required (Salchi ef of., 2000). Data usage by an ANN model typically
requires data scaling. This may be due to the particular data behavior or limitations of the transfer
functions. For example, as the outputs of the logistic transfer function are between 0 and 1, the data
are generally scaled in the range 0.1-0.9 or 0.2-0.8, to avoid problems caused by the limits of the
transfer fimction (Maier and Dandy, 2000). In this study, the data were scaled in the range of -1 to+1,
based on the following equation:

p, =22 Bon y_y ()

Pase ~ Prin

where, p, is the observed data, p, is the scaled data and p,, .. Py, are maximum and minimum observed
data points. In order to provide the consistency of analysis, the above equation was used to scale the
average air temperature, stream flow and rainfall data, then the unit of the scaled p, would correspond
to individual data series.

The Artificial Neural Network Structure

Network structure includes input and output dimensions, the number of hidden layers, number
of hidden neurons and model efficiency calculations. In the present study, input dimension includes
monthly stream flow, rainfall and average air temperature data for the time step of t. Output dimension
is the predicted stream flow at the time of t+1. Only one hidden layer was used which has been
shown to be sufficient in a number of studies (Rajurkara ef af., 2004; Chiang ef of., 2004; Maier and
Dandy, 2000). The appropriate number of neurons in the hidden layer is determined by using the
constructive algorithm (Maier and Dandy, 2000}, by increasing the number of neurons from 1 to 30.
The log-sigmoid, tangent-hyperbolic and linear activation functions are also used. The ANN model for
stream flow evaluation was written in the MATLAB environment, version 7. The L-M and the CG
algorithms were evaluated for the network training so that the algorithm with better achieved accuracy
and convergence speed could be selected. To provide an adequate training, network efficiency was
evaluated during the training and validation stages, as suggested by Rajurkara ef /. (2004). In this case,
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if the caleulated errors of both stages are trended to decreasing, then the training period will increase.
This is contimied to the point of the training stage error starting to decrease, but the validation stage
of error starting to increase. At this point training is stopped to avoid overtraining and optimal
weights and biases are determined. Capability of the stream flow generation model during either traiming
or validation stage can be evaluated by one of the commonly used error computation functions
(Rajurkara ef af., 2004, Chiang er al., 2004).

The Used Error Functions
Root means squared error (RMSE):

TRl
ERMS = ﬁz (Qm(m) - Qubim))z (7)
m=l

where, ERMS is the root mean squared error; W, and Q. are the simulated and observed stream
flow values, respectively and N is the sample size.
Root mean absolute error (RMAE) is given by

E
Egyp = g‘* ity
14
Eps = EZ anm(m) - ths(m) (9)
1

where, ERMA and EMA are the root mean absolute error and mean absolute error, respectively,
Correlation Coefficient (R)

'21: Qoo ~ Lot M Liontay ~ Qo)
R = =

(10}

= = = o z
Z (Qubotmy = Qo) Z (Qutontony = L)
i=l i=1

where, Q,...,, is the mean of the observed flow and Q
the observed flow and Q. the modeled flow.

the mean of the modeled flow, Q. 15

sim(m)

RESULTS AND DISCUSSION

Model Structures

Six model structures were developed to investigate the impact of variable enabling/disabling of
input dimension on model performance. Model 1 is enabled for rain fall data as input dimension of tree
stations, model 2 is enabled for rain fall and average temperature, model 3 is enabled for rainfall, average
temperature and streamn flow at the time step of t-1 and model 4 is enabled for rain fall and stream flow
at the time step of (1, t-1, t-2), model 5 is enabled for rain fall and stream flow at the time step of
(t, t1,1-2.t-3) and finally, model 6 is enabled for rainfall, average temperature and stream flow at the
time step of (t-1, t-2). Equations 11 to 16 represent model 1 to Model 4, respectively. Table 1 is
showing a competitive of convergence speeds.

Qt+ l)valik = f{p(t)mx’ p(t)smg’ p(t)kale} (1 1)
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QU+ 1,4 = f{P(t)\imi’P(t)smg=P(t)kale’T(t)dmi’T(t)smg} (12)
QU+ 1)y = TP, P,y PO T, T, QU D} (13)
QU+ 1) e = TP L g P(Ue - QU e, QUE =1 QUE—2) i} (4

Q(t + l)vauk = F{P(t)dmzi’P(t)sang’P(t)kale’Q(t)vaﬁk’Q(t - l)vahk’Q(t - z)vaup Q(t - 3)valik} (15)
QUt+ 1), gy, = FIP(E) s P (0,0 PO, T( 1 T QU - 1) QUE—2) ) (16)

where, Q(t+1),4, is predicted rain fall -run off, for the time step of t+1; Q(t), 4,15 monthly
rainfall- runoff data of Valikbon hydrometric station and P(t)y.,;, P(t).uz P(t)y. are monthly rainfall
data of Darzikola, Sangedeh and Keleh rain gauge stations for the time step of t and T(t)y,.;, T(D)ag
is average monthly air temperature data at Darzikola and Sangedeh station for the time step of t
(Table 2).
where, RMSE is root means squared error, ERMA is root mean absolute error and R is correlation
cocfficient. In Fig. 3a-f are indicated a comparison of predicated rainfall- runoff by different models.
Table 3is showing a comparison of convergence speeds for Levenberg- Maqurdt and the gradient
descent algorithms, as measured by number of neurons during a validation stage for model 5.

Table 1: Result of convergence speeds for model 5 performance with different number of epochs
No. of epochs

20 40 60 80 100
LM RMSE 0.212 0.071 0.006 0.003 0.001
RMAE 0.0014 0.0006 0.0006 0.00003 0.000007
CG RMSE 21 1.41 2.06 0.91 0.74
RMAE 0.018 0.019 0.025 0.009 0.0054

Table 2: Result of model performance level during training and validation stage

RMSE ERMA R
Model Rrchitechture  Training ~ Validation Training Validation Training Validation
Model 1 3181 321 0.070 0.02 0.0006 0.47 0.99
Model 2 5111 0.47 0.100 0.003 0.0009 0.997 0.9998
Model 3 6201 0.03 0.010 0.0003 0.000094 0.99 1
Model 4 7201 0.01 0.005 0.0001 0.00006 0.99 1
Model 5 7121 0.02 0.001 0.0001 0.000007 0.99 1
Model 6 7141 0.03 0.001 0.07 0.0006 0.99 1

Table 3: Result of model 5 performance with different number of neurons
No. of neurons

2 4 6 8 10 12 14 16 18 20
LM RMSE 0.435 0.135 0375 8870 0.029 0.013 0.023 0.010 0.005 8.580
R 0.990 0.990 0990 0990  0.990 0.990 0.990 0.990 0.990 0.810

RMAE  0.270 0.090 0210 0.015 0.017 0.008 0.018 0.007 0.023 0.075
CG  RMSE 1.880 2500 0920 0770 0.780 0.740 1.250 1.880 0.750 0.750
R 0.820 0970 0980 0.980  0.980 0.970 0.830 0.980 0.970 0.980
RMAE  1.166 2100 0590  0.001  0.530 0.740 1.010 1.450 3.190 0.007
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Fig. 3. Comparison of predicated rainfall- munoff by different models, (a) Model 1, (b) model 2, (¢)
Model 3, (d) Model 4, (&) Model 5 and (f) Model 6
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Model Performance Levels

Table 1 shows individual model performance levels as measured by ERMS, EMSE and R and
individual model architecture as represented by the number of neurons in the input, output and hidden
layers. Furthermore, computed rainfall-ranoff by individual models are compared with the
corresponding observed values and illustrated by their graph (Fig. 3) which is indicated by the results,
it can be concluded that model 1 resulted with the lowest achieved performance levels. Disabling of
Darzikola, Sangede, Kaleh stations rain gauge data (model 2) resulted in a considerable improvement
of the performance levels. Darzikola, Sangede, Keleh stations rain gauge and using average temperature
(model 3) itis possible for the rainfall, average temperature and stream flow at the time of step t-1 and
modzl 4 representing for the rain fall and stream flow at the time step of (t, t-1, t-2). Model 5 is further
improved the achieved performances representing for rain fall and stream flow at the time step of
(t, t-1, t-2.t-3). Finally using model 6 is possible for rainfall, average temperature and stream flow at
the time step of (-1, t-2).

Levenberg-Marquardt and Conjugate Gradient Algorithms

Based on the gained information from model 5, computational efficiencies of the L-M and the CG
algorithms were compared. Figure 3 shows achieved performances for determination of the optimal
number of neurons and epochs during the training phase, using ERMS, EMAE and R as measurement
criteria. According to these figures superiority of the L-M algorithm over the CG algorithm for better
performance (lower estimated error and increased efficiency in determining the number of optimal
neurons) and higher convergence speed (when determining epoch size) is clearly established. Therefore
the L-M was used for training of the model structures.

CONCLUSION

In this research, the influences of training algorithm efficiencies and enabling/disabling of input
dimension on rainfall-runoff prediction capability of the artificial neural networks was applied. A
watershed system in Mazandaran province in the north region of Iran was used for the case study. The
used data in ANN was monthly hydrometric and climatic data with 31 years duration from 1969 to
2000. For the mentioned model 27 year's data were used for its development but for the
validation/testing of the model 4 years data was applied. Six model structures were developed to
investigate the probability impacts of enabling/disabling rainfall-runoff, rainfall, precipitation and the
average air temperature input data. Efficiency of model 1 is enabled for rain fall data as input dimension
with using tree stations, model 2 for rain fall and average temperature, model 3 for rain fall, average
temperature and stream flow at the time step of t-1 and model 4 is enabled for rain fall and stream flow
at time step of (t, t-1, t-2), model 5 for rain fall and stream flow at the time step of (t, t-1, t-2.t-3),
model 6 for rain fall, average temperature and stream flow at the time step of (t-1, t-2). Computational
efficiencies, i.e., better achieved accuracy and convergence speed, were evaluated for the conjugate
gradient (CG) and Levenberg-Marquardt (L-M) training algorithms. Since the L-M algorithm was
shown to be more efficient than the CG algorithm, therefore it was used to train the proposed six
models. Based on the results validation stage of root mean square error (RMSE), Mean Squared Error
(MSE) and coefficient of determination (1) measures were: 0.07, 6x107, 0.99 (model 1); 0.1, 9x107%,
0.99 (Model 2); 0.01, 9x107°, 1 (Model3); 0.005, 6x107°, 1 (Model 4); 0.001, 0.7x10°, 1 (Model 5);
0.001, 6x107°, 1 (Model 6). As indicated by the results, model 5 provided the highest performance.
This was due to enabling of the precipitation and rainfall, resulting in improved training and thus
improved prediction. This study has shown that when improved computational efficiency measures
are combined with enabling of input parameters describing physical behavior of hydro-climatologic
variables, improved model predictability becomes possible by the artificial neural networks.
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