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Abstract: Tn this study we examined the performance of five post-processing
methods on WRF model outputs for daily maximum and minimum temperature
forecasts in thirty synoptic meteorological stations over Iran. Direct Model Output
(DMO) always contains systematic errors which arise mainly from the simplification
of the earth topography in the model and deficiencies m the physics of the model.
Different methods for post-processing of these outputs are given to remove the
systematic errors. The results of the experiments show all methods are successful
i removing the systematic errors m the model outputs. Comparing calculated
statistical scores like root mean square error, mean absolute error and mean error
indicate that Kalman Filtering (KF) and Artificial Neural Network (ANN) methods
are better compared to other methods. Due to the importance of specific temperature
thresholds in application, we verified the post-processed temperature forecasts for
some specific temperature thresholds. The results of some statistical measure such
as Proportion Correct (PC), Treat Score (TS) and False Alarm Rate (FAR) showed
satisfactory for various thresholds, but better results have been obtained for higher
values of maximum temperature and lowest values of minimum temperature.
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INTRODUCTION

Meteorological factors are unmanageable variants that affect the plant's growth directly
and indirectly and can impress all effective factors including short, mid and long-term
activities in agriculture. For example, orchardists must decide whether or not to protect their
orchards each night during the frost season (Baquet et al., 1976). Since, the cost of heating
an orchard 1s substantial and since an entire season’s harvest 1s at stake, forecasts of
minimum temperature are needed to optimally weight the tradeoffs (Murphy and
Winkler, 1979). In order to be able to act sooner to ameliorate the potential impacts of a frost
event instead of just reacting to the situation, very accurate and reliable temperature
forecasts with enough lead time has always been important for agricultural section.
Meteorologists have tried to provide improved forecasts of temperature from a long ago.

Today, Numerical Weather Prediction (NWP), models have become increasingly valued
for predicting minimum and maximum temperature. But the forecasts of NWP models for
swface temperature are known to have systematic errors partly due to the poor resolution

Corresponding Author: S. Vashani, Department of Meteorology, Science and Rescarch Branch,
Islamic Azad University, Tehran, Iran
305



Res. J. Environ. Sci., 4 (3): 305-316, 2610

of the topography and deficiencies in the physical formulation of the model. Statistical post
processing methods have been successful in correcting many defects mherent in NWP
model forecasts.

Among them, MOS (Glahn and Lowry, 1972) have been most common, with its own
strengths and weaknesses. The MOS technique has proven to be a useful tool for the
meteorological community, but to establish reliable forecast guidance, it requires a historical
data archive for a long period. Studies indicate that at least 2 years of archived data from
model runs are needed to derive a useful MOS equation (Jacks et al., 1990; Vislocky and
Fritch, 1995). Also, the model framework must be stable during and after the data archive
period, which means model configurations must be frozen though continuing advances have
been made in both spatial resolution and model physics (Kalnay ef al., 1996). Thus its use
in today’s rapidly changing model environment 1s somewhat linited.

In recent years some techniques have been developed that uses short training period
(recent 2-3 weeks) to objectively estimate and adjust current forecast errors and yield refined
predictions. Using a short traiming period enable an updating system to respond quickly to
changes in error patterns and a longer tramning period increases statistical stability.

Previous studies (Stensrud and Skindlov, 1996, Mao et al., 1999; Eckel and Mass, 2005,
Stensrud and Yussouf, 2005; Mccollor and Stull, 2008) have shown how straightforward
moving-average and weighted-average methods with short training periods show
umprovement upon raw poirnt model temperature forecasts. Also, more sophisticated methods
of Kalman filtering (Homleid, 1995; Galanis and Anadranistokis, 2002) and artificial neural
network (Marzban, 2003) with short traimng periods have been employed with success to
produce forecast guidance.

In this research we compared the performance of the moving average, weighted average,
Kalman filtering and artificial neural network techniques for the post processing of the
Weather and Research Forecasting (WRF) model output for daily mmimum and maximum
temperature forecasts over Tran. Given to the extra importance of extreme values and specific
thresholds of temperature forecasts for agricultural aims we divided the maximum and
minimum temperature to five parts and verified the post processed output for four quintiles
separately by using the contingency table. Also, the verification process was repeated for
the zero Celsius temperature thresholds.

MATERIALS AND METHODS

Five post processing techniques are used to post-process the daily maximum and
minimum temperature forecasts of the WRF model for thirty synoptic meteorological stations
over [ran, during the period from 1 November 2008 through 31 April of 2009. The first used
method mn this paper 13 a simple Moving Average (MA). In this method forecast error
estimates for the previous n-days are weighted equally to estimate the current day error. The
second method 18 the linear weighted average (LIN), in which the previous n-days are
weighted linearly so that higher weight is entitled to more recent day's errors in a linear
fashion. The third methed is again a weighted average with the COS* (COS) weighting
function. The forth method is a linear Kalman filtering. This method is a two step
predictor-corrector method that corrects/updates the estimated forecast error using the last
observed error. Let x, be forecast error at time step k that is to be predicted. The system
equation defines the time dependent evolution of x;: by a persistence of the current bias plus
a Gaussian-distributed random term w, of variance

ag 2

o X = X T Wy
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where w, represents the random change from t-1 to t and is assumed to be normally
distributed with mean zero and variance W. The observable bias at time step k, v, 1s assumed
to be noisy, with a normally distributed random error term of v, of variance ¢..%; v, = x, + v,
The objective is to get the best estimate of x,, which is termed %x , by minimizing the expected
mean-square error; P=B (X~ %)%,

For updating the estimate x,, when the observed bias y, becomes available, the following
equation 1s used:

%=Xy th (—xu)

Where, b, 13 the Kalman gain and 1s determined by the following equation:

Pt Gy
b, = 2 2
pk—l + Gw + Gv

And finally for updating the error covariance term the following equation 1s used:

P, = (Peto)) (1-by)

As suggested from previous studies (Roeger et al., 2003; Dle Monache ef al., 2006) the
value of 0.01 is used for the ratio of r defined by ¢,/0,”. For a more complete description of
the Kalman filtering and its application m post processing see e.g., Kalnay (1996) and
references therein.

The fifth method is a feed-forward Artificial Neural Network (ANN) that is used to
calibrate the Direct Model Output (DMO). In this network the neurons from each layer are
comnected and propagated forward to all the neurons of the following layer. Figure 1 shows
a schematic diagram of feed-forward neural network with three layers: input, hidden and
output (Hall et al., 1999).

To assess the relative impact of different post-processing methods several common
verification statistics are calculated. They include Mean Absolute Error (MAE), Mean Error
(ME), mean squared error (RMSE) and skill score based on MAE defined as follows:

1 N
MAE:EZKZI\O—Fl

1 ow
I\{EZEEK=1O_F

Input neurons Middle layer Output neurons

Fig. 1: A schematic of neural network with three layer
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1 W 2
RMSE = J_EEH (0O-F)

SKILL MAE =1— ;;mﬁ

Do

where, N is the number of both observations and forecasts, O, and F, the observation and
forecast maximum/minimum temperature for the k™ day respectively and MAE,, and MAEy,o
denote the MAE for the post-processed and direct model output, respectively.

As suggested from previous studies (Eckel and Mass, 2005; Zhong et al., 2005) we
considered a window of 14 days training period for all the methods applied here.

Data

Daily WRF forecasts of minimum and maximum surface temperature for 1-3 forecasts
days at 15 km grid spacing, initialized at 1200 UTC from the Global Forecast System (GFS) of
the National Weather Service’s National Centres for Environmental Prediction (NWS/NCEP)
are gathered during the period from 1 November 2008 through 31 April 0f 2009 over Iran. The
data consist of observations and bilinear interpolated forecasts of surface temperature at
irregularly spaced thirty meteorological synoptic stations located at provincial centres.
Figure 2 shows the geographical location of the 30 synoptic stations. The data archive is
operated and maintained by the I.R. Iran Meteorological Organization.

Fig. 2: Geographical locations of the thirty synoptic stations in provincial centres over Iran
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RESULTS

Using a window of 14 days training period for all the post-processing methods, the
statistical measure of ME, MAE, RMSE and SKILIL MAE were calculated for daily maximum
and minimum temperature forecast periods of days 1-5 and all post-processing methods.
Overall, results of all five post-processing methods indicated improvement over the DMO
of maximum and minimum daily temperature forecasts, for all forecast days 1-5. Figure 3
shows the calculated ME for DMO and all the post-processing methods for maximum and
minimum temperature forecasts. As seen in the Fig. 3a, there is a cold bias, between 3 and
3.5 Celsius in the DMO of daily maximum temperature forecasts. Daily minimum temperature
DMO forecast errors ranged from -3.4 to -5 Celsius indicating a warm bias for DMO overnight
temperature forecasts (Fig. 3b). All post processing methods have reduced the bias in DMO
and ME is close to zero for all forecast days (Fig. 3b).

In terms of mean absolute error (MAE), (Fig. 4a) there is a sharp decrease in MAE
especially for short-range daily maximum temperature forecasts for all post processing
methods. For maximum temperature forecast DMO the MAFE is between 3.1 and 3.8, while
after post processing the MAE decreases notably and is between 1.5 and 2 for different
methods and forecasts days. Similarly for minimum temperature forecasts the MAE in the
DMO ranged from 4.5 to 5.5. That is reduced significantly and ranges from 2.5 to 3 for all post
processing methods and forecast days (Fig. 4b).

Calculated Root Mean Squared Error (RMSE) for daily maximum temperature DMO
forecasts, shown in Fig. 5a ranged from 3.6 to 5 for days 1-5. All post- processing methods
reduced DMO RMSEs ranging from 2.1 to 2.8 Celsius for all forecast days. The daily minimum
temperature DMO forecasts error ranged from 4.1 to 5.7 Celsius for days 1-5, which indicates
great error dispersion. All post-processing methods reduced the RMSEs from 2.5t03.2
(@
oDMQ oMa BLIN
aCQs' BKF EANN 1

10) Days

ME ()

Fig. 3: The mean errors for daily (a) maximum temperature and (b) minimum temperature from
the sample for forecast days 1-5
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Fig. 4: The same as in Fig. 3 but for MAE
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Fig. 5: The same as in Fig. 3 but for RMSE
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Fig. 6 The same as in Fig.3 but for MAE skill score (relative to DMO)

Celsius for all forecast days. MA, LIN and COS’ methods show nearly the same reduction
in the RMSE over DMO forecasts. KF and ANN methods perform better than other methods
while ANN method is the best (Fig. 5b).

To show the skill of different post processing methods over the DMO as the reference
forecast, a skill score based on MAE was calculated for both minimum and maximum
temperature forecasts (Fig. 6a). The MAE skill score ranges from 0 to 1 with value of zero
indicating no improvement skill and a value of one 13 for perfect forecasting skill. As 1s seen
in Fig. 6a all post processing methods have significant improvement from 45 to 55% over the
DMO forecasts. There is no significant difference between post-processing methods but KF
method performs best by a slight margin, while ANN technique shows mcreasing skill for
days 1-5.

MAE skill score measured with DMO as the reference forecast 1s shown in Fig. 6b. MAE
skill score indicates that all post processing methods have sigmficant improvement from
40 to 50% over the DMO forecasts. There is no significant difference between post-
processing methods but KF and ANN methods perform better by a slight margin, while ANN
technmique shows increasing skill for days 1-5.

On the whole, the KF and ANN methods showed smaller error and higher skill compared
to other methods for both minimum and maximum temperature forecasts.

VERIFICATION
In many cases for agricultural applications, the user 1s interested to know if the

temperature exceeds a particular threshold. Tn such cases it is suitable to consider the
temperature as a discrete quantity by specifying a threshold. Tt is thus possible to assess the
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Table 1: Cell count a is the number of event forecast to occur and did occur. Other cell counts (b, ¢ and d) have similar
meanings and n is the total number of forecasts/observations in the sample

Events Observed Not observed Tatal forecasts
Forecast a (hits) b (false alarms) ath

Not forecast ¢ (misses) d (correct rejections) ctd

Total observed atc b+d n = atb+ctd

quality of the temperature forecasts as 1f it 1s a binary event. We present here a brief
description of verification procedure for binary events using 2x2 contingency tables, which
1s discussed in more detailed by Joliffc and Stephenson (2003) and Wilks (2006).

Forecast Verification Using a 2x2 Contingency Table

The joint discrete sample distribution of forecasts and observations is given by a
contingency table which is formed by counting different of forecast-observation pairs
(Table 1). It 1s thus defined as follows:

Calculated Quantities in 2x2 Contingency Table
Forecast quality can be assessed using several scalar quantities. Three of them
calculated 1n this study are follows:

Proportion Corrects (PC)

Measures the ratio of correct (luts and correct rejections) to the total number of
forecasts expressed as a percentage. Tt indicates the fraction of correct forecast and is
defined as:

(a+d
n

PC=

Tt varies between 0 and 1 with value of 1 for a perfect forecast.

Threat Score (TS)

This quantity is similar to PC when correct negatives have been removed from
consideration. It shows the fraction of observed and/or forecast events that were correctly
predicted and 1s defines as:

TS
{a+b+c)
False Alarm Ration (FAR)
Measures the ratio of false alarms divided by the total number of events observed. It
indicates the fraction of the predicted yes events that did not occur. It is defined as
follows:

AR - b
(a+b)

PC and TS are positively oriented (the higher the better) and vary between 0 and 1 with
value of 1 for a perfect score. FAR also ranges between 0 and 1 but is negatively oriented
with values close to zero indicating better forecasts.
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VERIFICATION RESULTS

In order to assess the skill of temperature forecast for high and low temperature
thresholds, the observed mimmum and maximum temperatures for each meteorological
station were sorted and divided into five equal parts. The four quintiles were then
selected as four temperature thresholds for each station. Due to the fact that O Celsius is also
an important threshold it was assigned as the fifth threshold for each station. The
verification process was then camried out for each threshold separately using
contingency tables. Table 2-4 show the calculated statistical scores (PC, TS and FAR) for
different post-processing procedures for binary forecast of a specific minimum
temperature threshold.

In terms of PC, Table 2 shows that, in general the performances of all methods are better
for the first and fourth thresholds. The values of PC for these two thresholds are close to 0.9
for all post-processing methods indicating that m general 90% of the yves/no forecasts
for the first and fourth minimum temperature thresholds were correct. The values of PC for
the other two tlresholds are lower showing a lower skill compared to the first and fourth
thresholds.

Table 2: Calculated PC, TS and FAR quantities by using 5 methods for maximum temperature on the first day

Threshold MA LIN Cos? KF ANN
PC

Quintile 1 0.91 0.90 0.91 0.91 0.91
Quintile 2 0.74 0.71 0.76 0.84 0.85
Quintile 3 0.75 0.73 0.74 0.81 0.81
Quintile 4 0.89 091 0.89 0.88 0.87
TS

Quintile 1 0.60 0.62 0.61 0.64 0.64
Quintile 2 0.42 0.40 0.35 0.35 0.37
Quintile 3 0.37 0.36 0.37 0.41 0.38
Quintile 4 0.60 0.65 0.60 0.62 0.61
FAR

Quintile 1 0.21 0.19 0.20 0.18 0.20
Quintile 2 0.50 0.85 0.41 0.42 0.42
Quintile 3 0.41 0.49 0.50 0.45 0.45
Quintile 4 0.30 0.37 0.31 0.31 0.31

Table 3: Calculated PC, TS and FAR quantities by using 5 methods for minimum temperature on the first day

Threshold MA LIN Cos? KF ANN
PC

Quintile 1 0.75 0.77 0.73 0.84 0.86
Quintile 2 0.57 0.67 0.67 0.78 0.77
Quintile 3 0.71 0.69 0.71 0.72 0.74
Quintile 4 0.81 0.78 0.80 0.86 0.87
TS

Quintile 1 0.51 0.52 0.50 0.51 0.52
Quintile 2 0.40 0.39 0.42 0.44 0.44
Quintile 3 0.41 0.41 0.39 0.41 0.51
Quintile 4 0.60 0.59 0.61 0.62 0.63
FAR

Quintile 1 0.21 0.39 0.40 0.31 0.29
Quintile 2 0.50 0.45 0.51 0.41 0.39
Quintile 3 0.41 0.49 0.56 0.43 0.43
Quintile 4 0.26 0.25 0.29 0.25 0.24

Table 4: Calculated PC, TS and FAR quantities by using 5 methods for 0°C on the first day

Quantities MA LIN cos? KF ANN
PC 0.82 0.84 0.85 0.88 0.90
TS 0.72 0.74 0.74 0.75 0.76
FAR 0.10 011 0.12 0.10 0.10
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Fig. 7. Proportion correct (PC) for daily (a) maximum temperature and (b) minimum

temperature post processed with moving Average technique sample forecast day 1-5.
The different Quintiles, from left to right are Quintile 1 to 4. As shown in the legend

60% of the 1ssued/occurred ves forecasts were correctly predicted. The values of TS are
close to 0.4 for the other two thresholds. Similar results hold for FAR Table 2 the values of
FAR are around 0.2 for the first threshold indicating that in average 20% of the yes forecast
for maximum temperature did not occur. There is not much difference between the
performances of different post-processing techniques though KF and ANN perform slightly
better.

Table 3 shows the same scores as n Table 2 but for mimmum temperature threshold
forecasts. As seen in Table 3 the results of PC are similar to those for maximum temperature,
namely the results for the first and fourth thresholds are slightly better compared to other
two thresholds (first and second) and KF and ANN score relatively better than other three
methods (MA, LIN and COS%).

Table 3 shows that the results of TS and FAR are similar to those for maximum
temperature for different threshold.

Table 4 shows the calculated TS score for binary temperature forecasts with 0 as the
threshold. As 18 seen in the table, around 90% of the times the below zero Celsius
temperature forecast were correct (PC™ 0.9). Calculated values for TS, presented in Table 4
shows that, around 75% of the forecast/observed below 0 Celsius were correctly predicted
(T570.75). Only 10% of the forecast for below zero degree forecast were false alarms
(FAR™0.1). Also, 1t 1s seen that KF and ANN perform better than the other three methods for
zero degree threshold (Table 4).

As, was seen at the previous figures, the maximum and minimum temperature forecast
errors, increased from day 1 to 5 for all the post-processing methods. Figure 7 shows the
value of PC score for maximum and minimum temperature forecast using MA method
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calculated at different thresholds (four quintiles) for forecast day 1-3. Tt is seen that the value
of PC decreased approximately 10% from days 1 to 5 (Fig. 7). The results are similar for other
methods.

DISCUSSION

The atmospheric temperature 1s one of the most important weather factors that affect the
human’s activity. Today, meteorological organizations use post-processed model outputs
for the forecast of near surface parameters to establish reliable model guidance. Most
common methods of MOS (Glahn and Lowry, 1972) and PPM require a long historical data
archive for reliable model guidance (Jacks et af., 1990, Vislocky and Fritch, 1995). In recent
yvears some techniques have been developed that use short training periods (recent 2-3
weeks) to objectively estimate and adjust current forecast errors and yield refined predictions
(Stensrud and Skindlov, 1996; Mao et al., 1999; Eckel and Mass, 2005; Stensrud and
Yussouf, 2005; McCollor and Stull, 2008). We have compared the performance of five
different techniques for the post-processing of daily mimmum and maximum temperature
forecasts over Iran. The main feature of the post-processing methods used is that they
remove the bias in the temperature forecasts without need to long historical data archive, so
they can adapt to weather changes quickly and can be used even when the model
configuration changes and can be implemented for new stations easily.

CONCLUSION

Results showed that all the methods eliminate the bias and reduce the mean error close
to zero. Mean absolute error was also reduced for all forecast days and post-processing
methods, though KF and ANN methods gave better results compared to MA, LIN and COS’
methods. The percentage of successful forecast increased to an acceptable level suitable for
operational purposes. In general, KF and ANN methods showed better results compared to
other methods and ANN performs slightly better compared to KF for longer forecasts ranges
(3 days and above).

In order to see the performance of different methods for high and low temperature
thresholds, four thresholds were determined using the four quintiles for observed maximum
and minimum temperature. Different statistical scores associated with the contingency tables
were calculated for both minimum and maximum temperature forecasts for each threshold.
Zero Celsius was also determined as a separate threshold for mimmum temperature forecasts.
Tn general better scores (PC, FAR and TS) were obtained for the first and the fourth quintiles.
Also maximum temperature forecast showed better results compared to minimum temperature
forecasts. Calculated scalars for mimmum temperature forecast using zero Celsius as the
threshold showed that between 82% for MA and 90% for ANN of the forecasts were correct
and the FAR was relatively low around 0.1.

Tt should be noted, however that all the methods used in this study rely exclusively on
statistical properties of the forecast errors and de not use the physics mherent in the
relationship between different model variables directly. Such a relationship 13 accommodated
most properly in MOS approach. The main advantage of ANN over other methods used here
15 that it 1s possible to use ANN with more than one variable as predictor and thus
incorporate the physics for better results (Marzban, 2003).
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