

Research Journal of **Environmental Sciences**

ISSN 1819-3412

Research Journal of Environmental Sciences 5 (9): 772-778, 2011 ISSN 1819-3412 / DOI: 10.3923/rjes.2011.772.778 © 2011 Academic Journals Inc.

Molecular Characterization and DNA Fingerprinting of *Xanthomonas* oryzae pv. oryzae Isolates from Climate Change Prone Areas in East Africa

¹A. Onasanya, ¹P. Kiepe, ²A. Basso, ³G. Nkima, ⁴F.E. Nwilene, ⁵I. Ingelbrecht, ⁶J. Lamo, ⁷M.M. Ekperigin, ^{1,7}R.O. Onasanya, ⁵O. Oyelakin, ⁸S. Winter and ²Y. Sere

Corresponding Author: A. Onasanya, Plant Pathology Unit, Africa Rice Center (Africa Rice), P.O. Box 33581, Dares-Salaam, Tanzania Tel: +255222780768 Fax: +255222780768

ABSTRACT

Genomic DNA fingerprinting is a useful tool for effective and reliable identification and differentiation of *Xanthomonas oryzae* pv. *oryzae* (*Xoo*) pathogen from rice. The study aimed to conduct molecular characterization and DNA fingerprinting of 23 *Xoo* isolates from East Africa and two *Xoo* isolates from IRRI (Philippines) as control. PCR analysis was carryout on genomic DNA of 25 *Xoo* isolates using 6 *Xoo* specific primer pairs. Cluster analyses of genetic data obtained from 25 *Xoo* DNA fingerprints revealed two major genotypes (GrpA and GrpB) among the 25 *Xoo* isolates. GrpA has three subgroups (GrpA1; GrpA2; GrpA3) and GrpB (GrpB1; GrpB2; GrpB3). GrpA genotype consists of 20 *Xoo* isolates from Uganda, Rwanda and Philippines while GrpB genotype has 5 *Xoo* isolates from Rwanda. Some *Xoo* isolates were identical (PX-1, PX-2; UX621, RX2101; RX554, UX623, RX4113; UX211, UX213, UX214, RX4112, UX215). The emergence of subgroup genotypes could possibly be due to mutations and interactions among isolates and strains in host cells. Some *Xoo* isolates from Rwanda and Uganda were identical suggesting possible pathogen migration between these countries and long-term survival. Durable resistance rice cultivars would need to overcome both GrpA and GrpB *Xoo* genotypes in order to survive after their deployment into different rice ecologies in East Africa.

Key words: Xanthomonas oryzae pv. oryzae (Xoo), DNA fingerprinting, Xoo genotype, Xoo pathogen migration, Rice cultivars, East Africa

INTRODUCTION

Rice Bacterial Leaf Blight (BLB) disease is caused by *Xanthomonas oryzae* pv. oryzae (Xoo). This BLB disease is highly destructive and found mostly in Asia, America and Africa (Zeigler and Alvarez, 1990; Adhikari et al., 1995; Sere et al., 2005; Onasanya et al., 2009). BLB disease

¹Africa Rice Center (AfricaRice), Dar-es Salaam, Tanzania

²Africa Rice Center (AfricaRice), 01 BP 2031, Cotonou, Benin Republic

³Rwanda Agricultural Research Institute, BP 138 Butare, Rwanda

⁴Africa Rice Center (AfricaRice), PMB 5320, Ibadan, Nigeria

⁵Central Biotechnology Laboratory, IITA, PMB 5320, Ibadan, Nigeria

⁶National Crop Resources Research Institute (NaCRRI), P.O. Box 7084, Kampala, Uganda

⁷Federal University of Technology Akure, PMB 704, Akure, Nigeria

⁸Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ) GmbH, Inhoffenstraße 7 B, 38124 Braunschweig, Germany

incidence and yield loss in Africa ranged from 40-85 and 25-65%, respectively depending on variety type, resistance level and climatic conditions (Sere $et\ al.$, 2005; Onasanya $et\ al.$, 2009).

Developing resistant varieties against BLB disease would help to increase rice production in BLB disease endemic areas. But the durability of these resistant varieties in farmers' fields is being hampered by unstable *Xoo* pathogen variation (Sere *et al.*, 2005). Understanding the extent of *Xoo* pathogen variations in BLB endemic areas would greatly help to maintain durable resistant varieties at field levels in different rice ecologies (Sere *et al.*, 2005). Different *Xoo* genotypes and pathotypes newly identified could be used to identify durable resistant improved rice varieties (Shanti *et al.*, 2010).

Several techniques have been used for analysis of Xoo pathogen variation and of these techniques include proteomics, genomics and pathomics characterization. Some(Onasanya et al., 2007-2010). Any of these techniques could be used reliably to characterize and differentiate Xoo pathogen and isolates. The Xoo genotypes and pathotypes identified could be used to screen improved rice cultivars to identify durable resistance type. Using proteomics to characterize Xoo isolates involves the use of isozymes and specific Xoo monoclonal and polyclonal antibodies using enzyme-linked immuno sorbent assay (ELISA) (Gnanamanickam et al., 1999; Onasanya et al., 2007, 2008). Genomics has wider applications into using Xoo genomic DNA in different Polymerase Chain Reaction (PCR) techniques to reveal variations and different genotypes among Xoo pathogen and isolates (Sakthivel et al., 2001; Onasanya et al., 2003, 2010).

The present study aimed to carryout molecular characterization and DNA fingerprinting of *Xanthomonas oryzae* pv *oryzae* isolates from climate change prone areas in East Africa using *Xoo* specific primers previously developed by Onasanya *et al.* (2010). Besides, the study aimed to revealed different *Xoo* genotypes, distribution and movement in East Africa.

MATERIALS AND METHODS

Research location: Bacterial isolate propagation and molecular PCR analysis were carried out at Central Biotechnology Laboratory, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria. The study was conducted in May 2009.

Isolate propagation: The 25 Xoo isolates (Table 1) used in this study were first propagated using a modified procedure developed by Onasanya et al. (2003). Nutrient broth (25 mL; pH 7.5) was prepared inside a 100 mL conical flask. Xoo isolate (200 μL) from storage was transferred into 25 mL of nutrient broth and kept under constant shaking at 28°C for 24 h for bacterial growth. The bacterial cells were removed by centrifugation, washed with 0.1 mM Tris-EDTA (pH 8.0) and kept at -20°C for DNA extraction.

Genomic DNA preparation: Xoo genomic DNA extraction and DNA quality checking were according to Onasanya et al. (2003). Genomic DNA extraction for all the 25 Xoo isolates was carried out.

Genetic analysis: The Polymerase Chain Reaction (PCR) analysis and thermal cycling program were according to Onasanya et al. (2010). The Xoo specific primers used (Table 2) in the PCR analysis were obtained from Onasanya et al. (2010). All the genomic DNA of the 25 Xoo

Res. J. Environ. Sci., 5 (9): 772-778, 2011

isolates (Table 1) was analyzed. PCR products electrophoresis, agarose gel staining and gel documentation were according to Onasanya et al. (2003).

Table 1: List of Xanthomonas oryzae pv. oryzae isolates used for the study

Isolate	Host plant	Country	
PX-1	Cultivated rice	Philippines	
PX-2	Cultivated rice	Philippines	
UX621	$Pusa\ Basmati$	Uganda	
UX211	WITA9	Uganda	
RX2101	IR64	Rwanda	
UX213	WITA9	Uganda	
RX2103	IR64	Rwanda	
RX551	Cultivated rice	Rwanda	
RX112	Cultivated rice	Rwanda	
RX4114	Cultivated rice	Rwanda	
RX113	Cultivated rice	Rwanda	
UX214	WITA9	Uganda	
UX212	WITA9	Uganda	
RX554	Cultivated rice	Rwanda	
RX2104	IR64	Rwanda	
RX552	Cultivated rice	Rwanda	
RX555	Cultivated rice	Rwanda	
UX622	Pusa Basmati	Uganda	
RX553	Cultivated rice	Rwanda	
UX623	Pusa Basmati	Uganda	
UX215	WITA9	Uganda	
RX4112	Cultivated rice	Rwanda	
RX4113	Cultivated rice	Rwanda	
RX4111	Cultivated rice	Rwanda	
UX216	WITA9	Uganda	

 ${\bf Table\ 2:\ Identity\ of}\ {\it Xanthomonas\ oryzae}\ {\bf pv.}\ {\it oryzae}\ {\bf fingerprinting\ primers\ used\ for\ the\ study}$

Primer	Sequence 5'-3'	
XooF1	TGGTAGTCCACGCCCTAAAC	
XooR1	CCTGAGCTACAGACCCGAAG	
XooF2	ATGCGCAGAAGCAGATAGGT	
XooR2	TGTCGCTTCCTGTGCTATTG	
XooF3	GACCACCGTGAACTCCTTGT	
XooR3	GCTTCGGCTTCTCGTATGAC	
XooF4	TGTGCCTAGCCATCAGACAG	
XooR4	AGCCGCGACAATTTCTTCTA	
XooF5	ACAAGGCGATGGATCAGTTC	
XooR5	AGCTTGGTGATGGTAGG	
XooF6	GACAAGGCGATGGATCAGTT	
XooR6	GATCTGGTGGCAAAACCTGT	
XooF5	ACAAGGCGATGGATCAGTTC	
XooR6	GATCTGGTGGCAAAACCTGT	
XooF7	CAGATTGATGCGTTGCTGAT	
XooR5	AGCTTGGTGATGGTAGG	

F: Forward direction, R: Reverse direction

Cluster analysis: Positions of scorable amplified DNA bands were transformed into a binary character matrix ("1" for the presence and "0" for the absence of a band at a particular position). Pairwise distance matrices were compiled by the Numerical Taxonomy System (NTSYS) 2.0 software (Rohlf, 2000) using the Jaccard coefficient of similarity (Ivchenko and Honov, 1998). Cluster dendrogram was created by unweighted pair-group method arithmetic (UPGMA) cluster analysis (Jako et al., 2009). Principal component analysis with GGEbiplot was carryout on 25 Xoo isolates using genetic data generated from seven Xoo specific primers (Ebdon and Gauch, 2002).

RESULTS

Molecular characterization and DNA fingerprinting of 23 Xanthomonas oryzae pv oryzae (Xoo) isolates from East Africa have been carried out. The two Xoo isolates from IRRI (Philippines) were used as control isolates. Distinct DNA fingerprints were obtained for all the 25 Xoo isolates genomic DNA analyzed (Fig. 1). Cluster analyses of genetic data obtained from 25 Xoo DNA fingerprints revealed two major genotypes (GrpA and GrpB) among the 25 Xoo isolates (Fig. 2). However, GrpA has three subgroups (GrpA1; GrpA2; GrpA3) as well as GrpB (GrpB1; GrpB2; GrpB3) (Fig. 3). GrpA genotype consists of 20 Xoo isolates from Uganda, Rwanda and Philippines while GrpB genotype has 5 Xoo isolates from Rwanda (Fig. 2). At 100% similarity coefficient some Xoo isolates were identical (PX-1, PX-2; UX621 and RX2101; RX554, UX623, RX4113; UX211, UX213, UX214, RX4112, UX215) (Fig. 2). GrpA genotype has 80% occurrence and distribution in among countries while GrpB has only 20% occurrence and distribution in one country (Table 3).

Table 3: $Xanthomonas\ oryzae\ {
m pv.}\ oryzae\ {
m genotype},$ occurrence and distribution

		Isolate origin and distribution			
Genotype	No. of isolate	Rwanda	Uganda	Philippines	Occurrence (%)
GrpA	20	9	9	2	80
GrpB	5	5	0	0	20

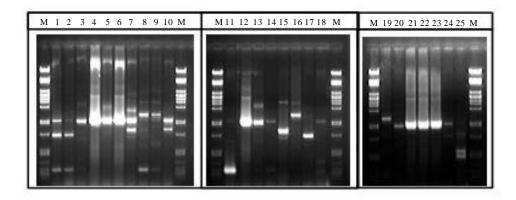


Fig. 1: Xanthomonas oryzae pv. oryzae DNA fingerprint as revealed PCR analysis using XooF1 and XooR1 Xoo specific primers. M: Molecular size marker

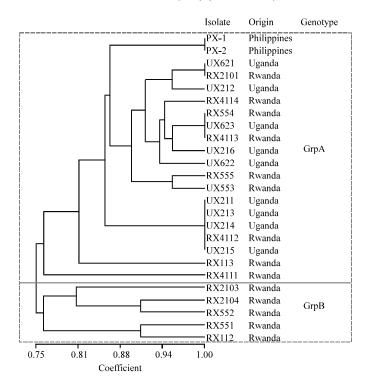


Fig. 2: Dendrogram showing genetic diversity among 25 Xanthomonas oryzae pv. oryzae isolates as revealed PCR analysis using seven Xoo specific primers

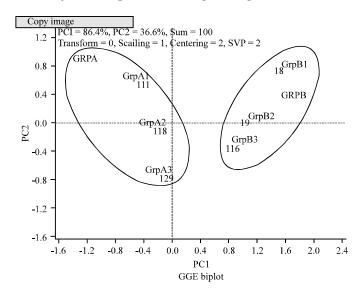


Fig. 3: Principal component analysis that revealed subgroup genotypes among 25 Xanthomonas oryzae pv. oryzae (Xoo) isolates using genetic data generated from seven Xoo specific primers

DISCUSSION

Genomic DNA fingerprinting is a useful tool for effective and reliable identification and differentiation of *Xoo* pathogen from rice (Onasanya *et al.*, 2010). The present study identified two major *Xoo* genotypes (GrpA and GrpB) and six subgroups (GrpA1; GrpA2; GrpA3; GrpB1; GrpB2; GrpB3) in East Africa. Similarly, two major *Xoo* genotypes genetic groups (*Xoo-A* and *Xoo-B*) with

five subgroups have been identified in previously studies in West Africa (Onasanya *et al.*, 2007, 2008). The present genetic study suggests the emergence of subgroup genotypes could possibly be due to mutations and interactions among isolates and strains that originally made up GrpA and GrpB genotypes (Onasanya *et al.*, 2003, 2007, 2008, 2010).

The use of a reliable molecular technique to differentiate *Xoo* isolates is a prerequisite into understanding the genetics and population structure of *Xoo* pathogen in Africa and identification of durable resistance cultivars (Adhikari *et al.*, 1995, 1999; Onasanya *et al.*, 2009. 2010). The present study has revealed the occurrence two *Xoo* genotypes, movement and distribution in East Africa. For example, GrpA genotype has 80% occurrence among countries while GrpB has 20%. It is very critical that both GrpA and GrpB genotypes are found in Rwanda and the implication would be that durable resistance rice cultivars must overcome these *Xoo* genotypes in order to survive (Onasanya *et al.*, 2009). Similar findings were obtained in West Africa where two or more *Xoo* genotypes known exist in one country (Onasanya *et al.*, 2007, 2008).

The high level of genetic variation among Xoo isolates in this study suggests could be as a result of frequent occurrence of mutants in Xoo isolates in different host cells (Mongkolsuk et al., 2000; Innes et al., 2001; Onasanya et al., 2003, 2010). The current genetic study revealed six subgroups Xoo genotypes (GrpA1; GrpA2; GrpA3; GrpB1; GrpB2; GrpB3) and were all present in Rwanda which could possibly be responsible for most sporadic cultivars infestation and epidemics in this country. Additional findings from the present study showed that some Xoo isolates from Rwanda and Uganda were identical (UX621, RX2101; RX554, UX623, RX4113; UX211, UX213, UX214, RX4112, UX215), suggesting possible pathogen migration between these countries and long-term survival (Adhikari et al., 1995; Onasanya et al., 2008, 2010). Identification of identical Xoo isolates as obtained by the present genetic study would be difficult to achieve using cultural and morphological techniques (Bonde et al., 1993; Onasanya et al., 2010). This has further revealed the importance and application of DNA fingerprinting techniques in the identification of Xoo isolates in situations where identification of Xoo isolates using cultural and morphological techniques often lack consistency and precision.

CONCLUSION

The present study on molecular characterization and DNA fingerprinting of Xoo isolates from East Africa identified two major Xoo genotypes (GrpA and GrpB) and six subgroups (GrpA1; GrpA2; GrpA3; GrpB1; GrpB2; GrpB3). There was evidence of Xoo pathogen migration between countries. Durable resistance rice cultivars would need to overcome both GrpA and GrpB Xoo genotypes in order to survive after their deployment into different rice ecologies in East Africa.

ACKNOWLEDGMENT

We are very grateful to the Germany Federal Ministry of Economic Cooperation and Development (BMZ), Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH and Bill and Melinda GSR Project for providing funds for this research. The authors would also like to acknowledge Mr. Sotou Georges for technical support.

REFERENCES

Adhikari, T.B., C. Cruz, Q. Zhang, R.J. Nelson, D.Z. Skinner, T.W. Mew and J.E. Leach, 1995. Genetic diversity of *Xanthomonas oryzae* pv. *oryzae* in Asia. Applied Environ. Microbiol., 61: 966-971.

- Adhikari, T.B., R.C. Basnyat and T.W. Mew, 1999. Virulence of *Xanthomonas oryzae* pv. *Oryzae* on rice lines containing single resistance genes and gene combinations. Plant Dis., 83: 46-50.
- Bonde, M.R., J.A. Micales and G.L. Peterson, 1993. The use of isozyme analysis for identification of plant pathogenic fungi. Plant Dis., 77: 961-968.
- Ebdon, J.S. and H.G. Gauch, 2002. AMMI analysis of national turfgrass performance trials. I. Interpretation of genotype by environment interaction. Crop Sci., 42: 489-496.
- Gnanamanickam, V.B. Priyadarisini, N.N. Naryanan, P. Vasudevan and S. Kavitha, 1999. An overview of bacterial blight disease of rice and strategies for its management. Curr. Sci., 77: 1435-1444.
- Innes, D., I.R. Beacham, C.A. Beven, M. Douglas, M.W. Laird, J.C. Joly and D.M. Burns, 2001. The cryptic ushA gene (ushAc) in natural isolates of *Salmonella enterica* (serotype typhimurium) has been inactivated by a single missense mutation. Microbiology, 147: 1887-1896.
- Ivchenko, G.I. and S.A. Honov, 1998. On the jaccard similarity test. J. Math. Sci., 88: 789-794.
- Jako, E., E. Ari, P. Ittzes, A. Horvath and J. Podani, 2009. BOOL-AN: A method for comparative sequence analysis and phylogenetic reconstruction. Mol. Phylogenet. Evol., 52: 887-897.
- Mongkolsuk, S., W. Whangsuk, M. Fuangthong and S. Loprasert, 2000. Mutations in oxyR resulting in peroxide resistance in *Xanthomonas campestris*. J. Bacteriol., 182: 3846-3849.
- Onasanya, A., H.D Mignouna and G. Thottappilly, 2003. Genetic fingerprinting and phylogenetic diversity of isolates of *Staphylococcus aureus* from Nigeria. Afr. J. Biotechnol., 2: 246-250.
- Onasanya, A., M.M. Ekperigin, Y. Sere, F.E. Nwilene, J.O. Ajele and G. Oboh, 2007. Isozyme fingerprinting and genetic differentiation of *Xanthomonas oryzae* pv. *oryzae* isolates as revealed by glucose 6-phosphate dehydrogenase (G6PH) analysis. Biotechnology, 6: 357-363.
- Onasanya, A., M.M. Ekperigin, Y. Sere and J.O. Ajele, 2008. Enzyme polymorphism and genetic diversity in *Xanthomonas oryzae* pv. *oryzae* isolates causing rice bacterial leaf blight disease in West Africa. Int. J. Agric. Res., 3: 227-236.
- Onasanya, A., M.M. Ekperigin, F.E. Nwilene, Y. Sere and R.O. Onasanya, 2009. Two pathotypes of *Xanthomonas oryzae* pv. *oryzae* virulence identified in West Africa. Curr. Res. Bacteriol., 2: 22-35.
- Onasanya, A., A. Basso, E. Somado, E.R. Gasore and F.E. Nwilene *et al.*, 2010. Development of a combined molecular diagnostic and DNA fingerprinting technique for rice bacteria pathogens in Africa. Biotechnology, 9: 89-105.
- Rohlf, F.J., 2000. NTSys pc, Version 2.02j, Exeter Software. Setauket, New York, USA.
- Sakthivel, N., C.N. Mortensen and S.B. Mathur, 2001. Detection of *Xanthomonas oryzae* pv. *oryzae* in artificially inoculated and naturally infected rice seeds and plants by molecular techniques. Applied Microbiol. Biotechnol., 56: 435-441.
- Sere, Y., A. Onasanya, V. Verdier, K. Akator and L.S. Ouedraogo *et al.*, 2005. Rice bacterial leaf blight in West Africa: Preliminary studies on disease in farmers fields and screening released varieties for resistance to the bacteria. Asian J. Plant Sci., 4: 577-579.
- Shanti, M.L., C.M.K. Varma, P. Premalatha, G.L. Devi, U. Zehr and W. Freeman, 2010. Understanding the bacterial blight pathogen-combining pathotyping and molecular marker studies. Int. J. Plant Pathol., 1: 58-68.
- Zeigler, R.S. and E. Alvarez, 1990. Characteristics of *Pseudomonas* spp. Causing grain discoloration and sheath rot of rice and associated *Pseudomonad epiphytes*. Plant Dis., 74: 917-922.