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ABSTRACT

In this study, we are concerned with the construction of a three point quadrature rule
{analogous to Simpson’s 1/3rd rule) for approximate evaluation of the real Cauchy principal value
integral. In addition to this, some compound rules have been formed for numerical integration of
Cauchy principal value integrals. The rules have been numerically verified with some standard test
integrals and also the error bound, asymptotic error has been obtained.
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INTRODUCTION

Singular integrals of Cauchy type occur abundantly in applied mathematics, particularly in the
theory of aeredynamics and in scattering theory. There has been substantial research work on the
approximate evaluation of real Cauchy Principal Value (CPV) integrals of the type:

I(f) = J‘@dx —l<a<l (1)

where, f (x) 18 continucus on [-1, 1]. Some of the rules are due to Price, Hunter (Chawla and
Jayarajan, 1975), Lokamidis and Theocaris, Elliott and Paget, Theccaris and Kazantazakis,
Monegato, ete. Standard integration rules meant for the approximate evaluation of real definite
integrals do not accurately integrate when applied to real CPV integrals given in Eq. 1. Among
many existing quadrature rules for approximation of real definite integrals, Simpson’s 1/3rd rule
is widely used. However, this rule does not yield good approximations when applied to real CPV
integral of the type:
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QOur aim in this paper 1s to construction of a three point quadrature rule for approximate
evaluation of the real Cauchy principal value integral (Conway, 1980) accurately and to develop
some compound rules for numerical integration of Cauchy principal value integrals.
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FORMULATION OF THE RULE
For the construction of the three point rule the nodes that we have chosen here are +ax and
0 and the rule based on these points is dencted by:

R () = wf (Otw,[f (ac) £ (ac)] (3)
The weights w,, w, and ¢ are to be determined so that:
[{(x)" =R ((x)"); fork=0,1,3 (4)
[t may be noted that.
[ {5 =R (x)™); fork=1,23,...

since the rule proposed in the Kq. 3 1s a fully symmetric quadrature rule.

Thus to determine the weights w,, w, and ¢ in Eq. 3 we make use of the identities given in
Eq. 4.

From this, we have the following set of linear equations in weights w;, w,, and ¢ as:

W, = 0,

ow, =1 (5)
and

3w, = 1

On solving the set of linear equations given in ‘(5) on assumption that « # O we have:
w, = O,w, = NE) and:

« = L G)

NE)

Thus, ¢ # 0, the rule R (f) given in Eq. 3 with weights w,, w, and the parameter ¢ # O given in
Eq. 6 represents a family of one parameter three point rules integrating all polynomials of degree
at most three.

Formulation of compound rules: For the construction of the compound rule, we rewrite the
integral given in Kq. 1 as:

I (D =1,+1, (say)

where:
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and

which is bounded in the interval [a, 1].

Thus, the integral I, is integrable in Riemann sense and can be numerically integrated by any
standard quadrature rule preferably of lower precision in compound form. Further, the integral I,
which 1s a Cauchy principal value integral can be approximated by the rule given in Kq. 3 with
weights and parameter given in Eq. & for a suitable value of a,

Here we constructed two compounds rules for approximation of integrals and for this we
consider here the Trapezoidal rule and Simpson’s (1/3)rd.

Compound trapezoidal rule: The interval of integration i.e,, [a, 1] is divided into n-subintervals
of equal length by the points:

and then apply the Trapezoidal rule for approximation of the integral I, in each subinterval:

5., %] forT=1,2..n
which yields:
I, =hY ¢(x,)
k=0

where:

R

n
X, = a+kh k=0 1..., n

and “denotes the first and last terms are halved.

Therefore:
I{) = R )+Q,(f) = R(f) (say)
where:
w0 = A< )1 )
and
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Q(f) = B 4(x)

is the rule constructed for the approximation of CPV integrals given in Kq. 2.
For any values of a; the sum:

ST

approaches to the integral I, as h-0; since the said sum is a Riemann sum. Thus, the accuracy of
the approximations very much depends on the rule:

R(f) = Jgfij—f[—ij
o - AE)- (-5
which in turn depends on a suitable choice of ‘a’,

Compound Simpson’s 1/3rd rule: To derive the compound Simpson’s 1/3rd rule, the interval
[a, 1] 1s divided into 2n-equal subintervals by the points:

%, = atkh; k=0

and

In this case:
h ol n
I =3{2><Z ¢(Xk) + 4x Z¢(X2kl)} = Q (f)

where “has usual meaning stated as above,

Thus:

I {)=RE)+Q,0 = Ry(f) (say)

Here Q.(f) is also a Riemann sum and hence tends to I, as h-0 or equivalently n-e. Thus the
approximation of the integral I depends upon the rule R (f) which is of order © (a®). Further, for
the particular value of ‘a’, this rule requires less number of functional evaluations compared to that
required in compound Trapezoidal rule. In other words, Q,(f) converges to [,(f) rapidly than that
of @,(f) since the order of convergence of compound Simpson’s 1/3rd rule and compound Trapezoidal
rule are, respectively:
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and

ERROR ANALYSIS
Let:

E@)=10-R® (7)

Then E (f) is the error associated with the rule R (f) meant for the approximation of the real
CPV integral I (f) given in Eq. 2. We now establish the following theorem concerning the error.

Theorem 1: If the derivatives of all orders of f (x) exist in -a<x<0 then:
E (HeO(a® (8)

Proof: Taylor's expansion of f (x) in -a<x <0 about x = 0 is given by:

o f(n) 0
f(x) = £(0)+ > ( )X“
n=1 n'
and from this we get.
I(£) = 2a'(0) + 2 €0 (0) + 29 (0)4 20 (0} (©)
9 300 17640 7 7

On the other hand, by expanding each term of the rule R (f) by Taylor's expansion about
x = 0 with determined weights and parameter ¢, we obtain:

2a’ 2a’ 2a’
R(f) = 2af'(0)+ ¥ (0 ®l(o £ {0) + ... (10)
(1) = (0] 22 00) 4 H 00y« 20
Thus, Eq. 7, 9 and 10 jointly imply:
B(f) = 2 00y 20 pogyy
45(51) 189(71)

and from this the desired result follows:

190



Fes. J. Environ. Set., 6 (§): 186-195, 2012

Error bound: To find the error bound of the rule R {f) we are following the technique due to
Lether (1971).

To apply the technique due to Lether (1971) we first prove the following Lemma and the
theorem.
Lemma. 1: If K (f) denote the truncation error in approximation of I f) by K (f) then:
E &%:0, fork=0,1,2,.
Proof: It is easy to show that:

E&)=0 (11

fork =0, 1, 2, 3 and for k is even.
Thus, it is sufficient to show that:

E(x®N=0 for ux1

Now:

E(szl) _ 23" _ R(quﬂ)

2u+1
232p.+'l 232u+1
-+l 3

1 1
= 2’"‘2““{21—}[}>0; for p=1 and 0 <a <1
L+

Theorem 2: If f (z) is analytic in a closed disc:
Q=1{zcC: |z| <r; r>a}

Then, |E | <M () e, where M (r) = Max

lel=r

e = ol EFR- 99 ar +ﬁ ar +E ar
‘ r-a 104 or*—a? ) 25\ 9r2—4a® /) 50\ r*-a°

r (z)‘ and:

which -0 as roe,
Proof: Let, f (z) =f (x); forze[-a, a].
Expanding f (z) by Taylor's series expansion about z = 0, we have:
f (x) = bytb x+b,x? b x*+....
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where:

IO}
!

k=01 2. (12)

for ze[-a, a].
Further, since f (z) denotes the truncation error in approximation of integral 1 (f) by the rule
R {f)ie.:
IH=RO+E D

and E being a linear operator, we obtain from Eq. 11 and 12;

B(f) = D bE(x¥) (13)

k-7
where:
B(x) - J.idx “R(x); k=S
L
Further:
E&H=0 for k being even

Henece Eq. 13 further simplifies to:

E(szﬂ)

E(f) = szuﬂE(szl):‘E(f)‘g > [baa
n=3

By Cauchy-inequality:

M@

2p+l
‘b T 2p+l

I8

where:

Mi{r) = I‘\/|[51x‘f(z)|

Thus:
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1

E(£) < M(r) irw

(14)

E(szl)

However by Lemma 1:
E (x*1:0; Forp:=1

Therefore by following the technique due to Lether (1971):

iE(XZ‘M) = EHI?III (15)

Hence from Eq. 14 and 15, we now have:
|E @) =<M(r)el (16)

where:

But:

x Y r+a Har
Elll-— = rln -
T r—a 34t

From the expressions of e, it is observed that for fixed a, e-0 as r-e which in term implies that:
E (f)-0 as ro«
The constant e, in Eq. 16 is defined to as error constant by Lether (1971).

Numerical verifications: For the numerical verification of the rules R.(f) and R_(f); we have
taken two standard integrals:

1 X
I = je—dx — 211450175 (Exact value)
X
-1

and

-1
f X 4x = 1.8319308 (Exact value)

X
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by the rules R.(f) and R4(f), respectively and compared the approximated values obtained with the

estimated results of Longman. In Tahble 1, we have got result 2.114525 correct up to five decimal

places when n = 51 by the rule Ri(f) where as the value of the same integral is obtained by the rule
R () in Table 3 is exactly same as the Longman’s estimated value 2.11450175 when n = 9.

Apainin Table 2 and 4, we have estimated another standard integral usually chosen by other

researchers as:

Tahble 1: Kvaluation of the integral I= _lre_xdx by the rule R(f)
x

-1

1
Approximation of i :I

Rule No. of intervals n Eodx Absolute error
3 X
R 3 2.121287 6.78525 e-03
10 2.115113 6.11250 e-04
31 2.114565 6.32500 e-05
40 2.114540 3.82500 e-05
51 2.114525 2.32500 e-05
Exact value 2.11450175
L -1
Table 2: Evaluation of the integral 1, = j fan X dx by the rule R.(f)
o X
Rule No. of intervals n Approximation of 1, :j tan;x dx Absolute error
-1
R(D) 3 1.826660 5.2708 e-03
10 1.831458 4.7280 e-04
21 1.831824 1.0680 e-04
31 1.831882 4.8800 e-05
40 1.831802 2.8800 e-05
51 1.831913 1.7800 e-05
Exact value 1.8319308

Table 3: Evaluation of the integral ;. jidx by the rule Ry(f)
X

I

Rule No. of intervals (2n) Approximation of lej.i—xdx Absolute error
o
Ry(f) 2.11459342 9.167 e-05
2.11450286 1.11 e-06
14 2.11450177 2.0 e-08
18 2.11450175 0.0
20 2.11450175 0.0
Exact value 2.11450175
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Lo
Tahble 4: Kvaluation of the integral 1, :I tan x dx by the rule R«(f)
X

-1

Rule No. of intervals(2n) Approximation of 1, :i tan: X dx Absolute erraor
-1
Ry(f) 2 1.83151609 41471 e-04
1.83192307 7.7300 e-06
1.83193049 3.1000 e-07
16 1.83193082 2.0000 e-08
20 1.83193083 3.0000 e-08
40 1.83193084 4.0000 e-08
Exact value~ 1.83193080

by the rules R(f) and R(f), respectively. The approximated value obtained as 1.831913 by the rule
R.(f) given in Table 2 is correct up to five decimal places when n =51, where as when the same
integral is estimated by the rule R_{f) as given in Table 4; we got the approximated wvalue
1.83192307 which is correct up to six decimal places when n = 2 and gives more approximate result
when n increases gradually.
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