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Abstract
Background and Objectives: The contrariety between recent observed and simulated trends in a global climate warming has inspired
a debate about conceivable events and indications for future climate fluctuation projections. Nonetheless, little has been said in this
discussion in regards to observed and simulated trends of temperature and relative humidity as these two features contribute extensively
to the warming earth. The present study aimed to evaluate and model seasonal fluctuation of observed air temperature and relative
humidity in East London, Eastern Cape South Africa. Materials and Methods: The historical data of temperature and humidity were
obtained from the South African Weather Service and analyzed through the ordinary least square regression model in Gretl statistical
software. Results: The study investigated trends patterns in temperature, relative humidity and appraises the relationship between the
observed and simulated temperature and relative humidity in the course of recent decades (1986‒2016), the trend also predicted for the
next 14 years (2017-2030). The observed, modeled and future trend patterns of temperature and relative humidity were produced using
statistical analysis. In general, the simulated trends fall within the observed range of trends (95% confidence interval), with better
consistency for the longer period. Seasonal trend patterns contrast for the seasons, with the autumn and summer exhibiting perpetual
positive trends across the decades and spring and winter season exhibiting a coherent cooling pattern across the study years that has
developed in the recent years and this is regenerated by the model for the year 2030. Conclusion: The present study recommended that
local consistency between models and observations may be a key in knowing the changes in the climatic variability along with its adverse
effects on human health, agriculture, ecological sustainability and socioeconomic status in the region.
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INTRODUCTION

The illustration of the mean state and inconsistency of
recent changing climate is indispensable for various purposes
in local, regional and global change studies. These incorporate
the observation and identification of environmental change
and climate model assessment1. Climatic features observation
needs consistency and reliable datasets for accurate analysis
and forecasting. Climatic datasets which describe variability in
space, time2, historically had deficient spatial scope and
coverage and have been off coarse resolution. This is because
the dataset’s significant purpose which is monitoring
prevailing climate and its historic view, environmental change
detection does not necessarily require spatially consistent
fields or higher resolution.

The disparity between recent observation and simulation
trends in global atmospheric fluctuation has incited a
discussion about possible causes and suggestions for future
climate change projections3,4. Nonetheless, little has been said
in this debate in regards to observed and modeled trend
pattern in temperature and relative humidity as these two
variables contributed significantly to a warming earth5,6. For
temperature extremes, there is a logical model concession to
the general spatial trend before the end of the 21st century
and generally, the simulated trend has been noted to be
steady with observed pattern7. Notwithstanding, high
variation is superimposed on the signal, which represents, for
example, a challenge to a model assessment of local changes
in the observational period. Moreover, changing climate
happens   sporadically    and    has    a    significantly  higher
year-to-year variability than mean climate8. In this manner,
internal variation is the dominant vulnerability responsible for
the increase of heat extremes at local to regional scale even by
the mid 21st century. It is generally recognized that a single
transient simulation of a known climate model ought not to
be relied upon to support the time progression of the
observations, because of the absence of consistency of
internal fluctuation at multidecadal timescales9,10.

The amount of water present in the air is one of the most
deciding contributors to the real greenhouse influence and
the volume of water vapor in the air is presumed to increase
under situations of greenhouse induced gas warming,
prompting a significant input on the anthropogenic climate
and environmental change8,10. Hypothetical and modeling
investigations forecast that relative humidity will continue
generally consistent at the universal scale as the climate
warms, prompting an expansion in specific humidity11-13. While
significant increments in surface relative humidity have been
distinguished in a few  regions14,15,  it  has  not  been  indicated

whether these progressions are because of natural or human
impacts on climate. In the same manner, air temperature and
relative humidity regulate or modify dissipation and
transpiration procedures which have explicit associations with
both the hydrological cycle and surface energy budget.
Human comfort and well-being are impacted by temperature
and relative humidity fluctuations, especially in summer and
autumn. The continuous increase in relative humidity and
temperature may lead to extreme heat which usually results
in higher mortality and morbidity dominatingly in the elderly,
infants and people with existing heart disease and respiratory
illness. Considerable excess mortality has been seen amid
various recent extreme heat16,17, including disastrous weather
events18. The climatic elements adding to enhanced morbidity
and mortality mostly identify with an association of extreme
temperature, with high relative humidity19 and frequently to
an extended period (a few days) of the extreme weather
event. The present study aimed to evaluate and model
seasonal fluctuation of observed air temperature and relative
humidity in East London, Eastern Cape South Africa. The
choice of this city was done because of the recent
development and urbanization trends which might modify
urban climate in the area. Furthermore, due to the recent
frequent forecast by the South African Weather Service about
extreme heat and abnormal weather occurrence in the coastal
areas of the country including the study area which represents
different climates and coastal cities in the region. The Fig. 1
shows the map of the study area.

MATERIALS AND METHODS

The series to be considered for the analysis are historical
series of air temperature and relative humidity of the city of
East London, Eastern Cape, South Africa for three decades
between 1986 and 2016 spanning 30 years. East London is a
city on the Southeast shore of South Africa. A city in Buffalo
city metropolitan region, Eastern Cape Province of South
Africa, with the Latitude 32E59'0"S and Longitude 27E52'0"E
and area of about 168.86 km2 (65.20 sq mi). East London has
a humid subtropical atmosphere with warm temperatures. In
any case, it has no genuine dry season, with a dry climate in
winter  and  the   wettest   conditions   in   the   spring  and
pre-winter. Between December and January, shorter and
lesser  dry  period  is  experienced.   East   London   has  a
record  breaking  minimum  temperature   of   3EC  (37.4EF)
and maximum temperature records of 42EC (107.6EF). The
warmest  temperatures  are  recorded  in  the  spring  months
as   opposed   to   summer   measured   in   other   nearby
urban areas.
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Fig. 1: East London area in Buffalo city metropolitan municipality, South Africa

Data and methods: To define and examining different trends
of temperature and relative humidity, monthly maximum
temperature (Tmax) and average monthly relative humidity
obtained from the South African Weather Service (SAWS)
during 1986-2016 was used. Before discharging the dataset,
the SAWS performed thorough quality control techniques,
including remedying suspect/wrong readings and amending
in homogeneities possibly brought on by possible
abnormalities taking the data and by instrumentation defect.
Having been used in many pieces of literature, it was
considered one of the best climate features datasets in South
Africa. This study focused on monthly and seasonal trend
during the study period.

Gretl regression model analysis: To confirm the trend pattern
of temperature and relative humidity, ordinary least squares
regression model analysis for the two variables was carried
out. The first phase was estimated utilizing the statistics from
ordinary least squares models using the observed temperature
(X1) and relative humidity (X2) where the relative humidity is
dependent variables. For the second phase is the least squares
regression against time, in order to regress trend against time,
time variables were required and this was done by adding
time  trend  in  Gretl,  in  the  same manner periodic dummies

were also employed and each dummy represents each month
of the year in the model (for example dm1= 1, if month = 1, 0,
therefore, dm1= 1 if January, 0 otherwise, dm 2 = 1 if February,
0 otherwise etc.). Furthermore, to account for monthly
variation (Fig. 2, 3) have to exclude one of the dummies, in the
present analysis, the dummy of January was excluded.
Likewise, ordinary least square (OLS) regression was utilized to
show and examine the estimation of a dependent variable in
view of its direct relationship to at least one independent
factor as an indicator. OLS has been utilized as a part of the
different studies to model comparable variables, for example,
the global temperature and ground temperature20-22. The
present study utilized the equation of the model as showed in
Eq. (1) and (2):

y = Mo +M1X1+M2X2+, (1)

Where M describes the parameters in the model that show
how the changes in each of the independent factors x impact
the reliant variable  y  and  ,  is  an  error  term  which 
addresses unexplained variation in the subject variable. Given
a sequence of random population data and subsequent to
assessing the parameters, the resulting linear regression
model was given in Eq. 1:
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yi = M+M1X1i+M2X2i+,I (2)

The   subscript    i    indexes   are   specific   observation.
The  term   i  is  the  residual.  It  is  the  distinction  between
the  observed  and  model  anticipated   estimations   of  the 
dependent    variable    (Fig.    4,    5).    The   model  exactness 

is assessed by the sample forecast coefficient of
determination, the last 5 years were removed (2011-2016)
from  the   observed   temperature   and   relative   humidity
data  (it  depend  on  the  choice  of  the  study)  and these
years  were  forecasted   in   order   to   validate   the  model
(Fig. 4, 5).

Fig. 2(a-l): Continue
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Fig. 2(a-l): Time series of monthly trend of observed maximum temperature, EC (1986-2016)
a: January, b: February, c: March, d: April, e: May, f: June, g: July, h: August, i: September, j: October, k: November, l: December

RESULTS AND DISCUSSION

Chow test: To complete the Chow test and check whether
there  was  a  statistically  significant  distinction in the trend
for   the   autumn   and   summer   period   contrasted  with the

spring and winter period, the study correlated a multiple linear
regression analysis to all the 372 (total number of months for
the study period where each season has 93 months across the
study period as shown in Fig. 3, 6) data for each variable
grouped. The regression model used was presented in Eq. (2).
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Seasonal  OLS  regression  models:  Seasonal  regression
models  were  processed  after  the  completion  of  the Chow
test.  OLS  regression  analysis  for  each  variable  for the
period of study employing the Gretl statistical analysis model
was  considered.  The  theoretical  model  equation  applied
here  is  the  same  as  in  the  Chow  test  (Eq.  2).  The  Table 1 

demonstrated  the  quality  of  the  connection  between  the
model  and  the  dependent  variable.

The data in Table 1 revealed the seasonal regression
model deviated from the actual value or observed by less than
0.1% (mean percentage error) for both temperature and
relative humidity which make this modeled valid and suitable

Fig. 3(a-l): Continue
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Fig. 3(a-l): Time series of monthly trend of observed average relative humidity, % (1986-2016)
a: January, b: February, c: March, d: April, e: May, f: June, g: July, h: August, i: September, j: October, k: November, l: December

for  the  future   prediction.   Overall,   5   years  validation
model   are    on    the    average    of    about    3.2   and  4.8%
for  temperature  and  relative  humidity,  respectively  away
from    the      actual      observation,      therefore,   this
indication  connotes  that  the model was suitable and
efficient.

Prediction of maximum temperature and relative humidity
between 2017 and 2030: With significant accentuation put on
trends pattern of temperature and relative humidity, whether
and how these meteorological features vary with season have
received little attention in the existing studies. The Fig. 4-7
show accumulated monthly and seasonal occurrences during 
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Fig. 4: Model validation with monthly maximum temperature EC (2012-2016)

Fig. 5: Model validation with monthly average relative humidity % (2012-2016)

Table 1: Results of the model validation and chow test for the complete 2012-2016 time series
Model/Var. R2 Adjusted R2 Standard error of the estimate Mean error (%) Mean abs. error (%)  Chow test F p
Max. Temp 0.802211 0.794273 0.878141 -0.067367 3.2297 <0.0000 0.0233
RH 0.548899 0.531493 3.988048 -2.0643 4.8657 <0.0000 0.9624

1986-2016. In general, compared to independent time trend
and periodic dummies, compound events were less frequently

observed. Interestingly, the occurrence of different trend
pattern exhibited obvious monthly and seasonal preferences.
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Fig. 6(a-d): Time series of seasonal trend of observed relative humidity, % (1986-2016)
(a) Summer (December, January, February), (b) Autumn (March, April, May), (c) Winter (June, July, August) and (d) Spring (September, October, November)

Fig. 7(a-d): Time series of seasonal trend of observed maximum temperature, EC (1986-2016)
(a) Summer (December, January, February), (b) Autumn (March, April, May), (c) Winter (June, July, August) and (d) Spring (September, October, November)

Most changes of temperature appeared in autumn and
summer    and    relative    humidity    in   spring   and   winter.

Furthermore, in autumn and summer period where RH
fluctuated between 65 and 90%, respectively. However, in
spring season where RH was between 70 and 95% during the
study period and in winter it was between 60 and 85%. This

revealed  that  spring  received  the  highest  relative  humidity
and winter received the lowest maximum during the period.
This coastal city also suffered from a steady increase in
temperature during the past three decades which might be
due to warm South Easterly trade wind from the Indian
Ocean23-25. This region is economically developed and densely 
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Fig. 8: Maximum temperature prediction (2017-2030)

Table 2: Seasonal coefficients and statistics for the multiple regression analysis of the time series for temperature and relative humidity (1986-2016)
Model Season Variable Coefficient  Typical dev. Statistic t-value Value of p
Observation  1 DJF_Summer Temp. 0.0151083 0.00196563 7.686 <0.0001

RH 0.497697 0.634207 0.7848 0.4347
Observation 2 MAM_Spring Temp. 0.0141914 0.00129708 10.94 <0.0001

RH !2.72893 0.393882 !6.928 <0.00001
Observation 3 JJA_Winter Temp. 0.00341834 0.00183565 1.862 0.0659

RH 1.37600 0.376922 3.651 0.0004
Observation 4 SON_Autumn Temp. 0.00880867 0.00204291 4.312 <0.0001

RH 1.54777 0.520306 2.975 0.0038

populated, so recurrent changes in climatic trends could result
in  great environmental upshot and economic losses, owing to
high exposure to weather extremes. In contrast, the majority
of these increases concentrated in the autumn and summer
months throughout the study period for temperature,
particularly in the past one and half decades. Accompanying
increased relative humidity can exacerbate impacts of extreme
heat12,26,27. While in one hand, during extreme temperature
periods, the mortality may increase exponentially with relative
humidity once exceeding 80% with 28EC17,28, on the other
hand, during severe droughts, extremes with low relative
humidity (lower than 40%) may aggravate damages to
agriculture29,30. In order to measure and project the future
trend of temperature and relative humidity during  the  period,
Gretl regression model was used. Consequently, it was
essentially determined by local prevailing climate conditions,
i.e., humid climate in the coastal area of the country and moist
and warm South Easterly trade winds which may contribute to
the changes in trend pattern of temperature and relative
humidity in the study31.

Furthermore, future trend of relative humidity and
temperature were predicted using OLS regression models and
it was revealed that these two climatic variables will
experience slight increases between 2017 and 2030 as
presented in Fig. 8 and 9. The model shows that the predicted
trend pattern fell within the 95% confidence interval and the
adjusted R2 was 79 and 53% for temperature and relative
humidity, respectively (Table 1) which indicated how well the
regression model predicts responses for new observations and
the adjusted R2 is usually lesser than R2 for the model to be
accurate. Data in Table 2 shows the seasonal coefficients and
significant statistics for the regression analysis of the time
series for temperature and relative humidity between 1986
and 2016. The larger the absolute value of the t-value and the
greater the level of significance, from Table 2, summer and
spring months have the highest t-value for temperature and
relative humidity, respectively. While the spring and winter
months have the least value for temperature and relative
humidity, respectively which connotes how significance is the
seasonal statistics for the regression analysis for temperature
and relative humidity.
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Fig. 9: Average relative humidity prediction (2017-2030)

The p-value was found to be below alpha value (0.05) in
almost all the seasons which implies that the result is
significant32.

CONCLUSION

Using meteorological observations from 1986-2016
datasets of temperature and relative humidity of East London
in South Africa, this study has presented monthly and seasonal
trend pattern time series of the climatologies of humidity and
temperature variables. Computations were done using
monthly observations in Gretl statistical analysis. This study
shows that spring received the highest relative humidity and
winter received the lowest maximum during the period. Air
temperature has increased more steadily compared to relative
humidity, with stronger trends in summer and autumn,
relative humidity has strong trends spring and winter as
presented in this study. Downward trends were observed for
both temperature and humidity, with stronger trends in
spring.  This  seaside  city  also  experienced  steady increment
in  temperature  during  the  previous  three  decades  which
may be  due  to  warm  South Easterly  winds  from  the  Indian
Ocean. Furthermore, this study presents the future trend
pattern  (2017-2030)  of  relative  humidity  and temperature
for  East  London.  This  study  has  examined  the  trend
pattern  of  temperature  and  relative  humidity  and
presented its future trend. Further suggested that local
coherence amongst models and observations might be a key

in identifying the alterations in the climatic variability along
with its conflicting consequences on human health,
agriculture,  natural  environment   and  economic  condition
in the region.

SIGNIFICANT STATEMENTS

This study investigates the trend pattern of temperature
and relative humidity for the 1986-2016 and further modeled
the future trend of both parameters in the study area. This
study discovers that local consistency between models and
observations which add to existing knowledge and this is
crucial in knowing the shifts in the climatic change, variability
and its conflicting effects on the environment, human health,
agriculture, ecological sustainability and socioeconomic status
in the region.
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