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Abstract
Background and Objective: Interaction among livestock, vegetation and watering point make a piosphere. Intensive grazing can alter
the functions of water and soil in rangeland (erosion in the end), changing the rate of flow of energy and the availability of nutrients in
ecological systems. The aim of this study was to evaluate indicators of soil surface condition in a steppe piosphere in Shahrood, Iran.
Steppe zone Mojen is dominated by Astragalus-Artemisia  vegetation type. Methodology: The trigger-transfer-reserve-pulse (TTRP)
framework and landscape function analysis were used. All eleven indicators of  soil  surface  processes were visually assessed using a semi-
quantitative scale. All eleven indicators were combined to obtain three indices of soil surface condition (stability, infiltration and nutrient
cycling). Data analyzed using SAS Proc GLM as one-way analysis of variance (ANOVA) to find the differences. Means were compared using
the Scheffé test. Results: Significant differences found among three distances 10, 100 and 1000 m for three soil surface indices infiltration,
nutrient cycling and stability. The indices of nutrient cycling, stability and infiltration of Artemisia  patches decreased near watering point
as 10.58, 34.2 and 16.12%, respectively. Conclusion: Based on this study findings, range managers should rebuild patches and the
runoff/runon processes around watering points and maintain the resources and build habitats and biodiversity and reduce harmful effects
of piosphere. 
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INTRODUCTION

In arid and semi-arid environments, water limits survival
and growth of livestock. The provision  of  water in arid and
semi-arid rangeland thus, changes the spatial distribution of
livestock and watering points become the center of livestock
activities. A result is an ecological unit composed of livestock,
watering point and rangeland’s vegetation: The zone is called
a piosphere, coined from the Greek ‘pios’ meaning ‘to drink’1.
Livestock selective  grazing  around  watering  point change
the height of vegetation. Some areas receive intensive grazing,
overtime overgrazing reduces patch density and decreases
patch size, finally grazing changes landscape function2,3.
Trigger-transfer-reserve-pulse (TTRP) framework simplifies
landscape function4. The TTRP (Fig. 1) considers the landscape
as a biophysical system and focuses on processes that
influence critical resources lost from landscapes. This
framework helps us to combine different information about
landscape function. Rainfall as a trigger distributes resources
like water, seed and litter across the landscape. Some
resources stored in the soil (reserve), some took out of the
landscape (leakage). Part of the landscape traps more
resources; they have different characteristics. The reserve
(patch) keeps different resources like water, litter and seeds.
The condition of reserve determines the pulse of plant species
growth.  Fire or herbivory diminish  the  pulses  (plant  growth)

and some part returns to the reserve. Short patches are the
evidence of overgrazing. Overgrazing increases erosion and
plant mortality and reduces soil nutrient recycling5,6.

This study explored the landscape function analysis (LFA)
by reporting on field measurement of steppe zone Mojen
piosphere located in Northern part of the Shahrood,
Northeastern part of Iran. The  landscape  function  assessed
by  using  the  landscape  function  analysis  (LFA) 7. LFA uses
11 indicators of soil surface to evaluate the functionality of
landscape. Three indices of functionality; nutrient cycling,
infiltration and stability are products of 11 soil surface
indicators7. The infiltration index shows runoff water lost and
available water for plants. The stability index shows soil ability
to resist against erosion and its recovery potential. The
nutrient cycling index show organic matter decomposition
and recycling. The specific aim of this study was to
characterize landscape function change along grazing
gradient from a watering point using three indices of soil
surface condition (stability, nutrient cycling and infiltration).

MATERIALS AND METHODS

The survey was conducted in steppe zone Mojen
(54E45'21"E, 36E30'18"N) (Fig. 2). Steppe zone Mojen
dominated by Artemisia  aucheri  and Astragalus  gossypinus.
Sheep  and  goat  grazing  have  changed  the  vegetation. The

Fig. 1: Trigger  transfer  reserve  pulse  (TTRP)  framework. This  framework  represents  resource  utilization  and  mobilization:
1: Run-on, 2: Plant germination, 3: Run-off, 4: Offtake, 5: Feedback, 6: Physical absorption (Modified and used with
permission)4
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Fig. 2: Location of watering point which information in this study collected along Mojen (steppe) watering point

Fig. 3: Illustration of transect for LFA monitoring, showing patches and interpatches (Reproduced with permission)7

study area has an average annual precipitation 216 mm
Mojen. The minimum temperature in December is -17.6EC and
the maximum temperature in June is 32.6EC.

Field sampling: The study area was classified to three
different distances (10, 100 and 1000 m) along watering point.
At each classified location, the landscape function was

sampled using five 25 m long transects were located to
represent at least 5 replications of Artemisia  patches and
interpatches.

Indices    of    soil    surface    condition:   On   each   transect,
11 indicators  of  soil  surface  processes were visually assessed
on  five  replicates   of   the  patch  and  interpatch (Fig. 3). Each
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Table 1: Calculation of stability, infiltration and nutrient cycling indices using eleven indicators (Reproduced with permission)7

Indicator Score Use objective Stability index Infiltration index Nutrient cycling index
Soil cover 5 To evaluate the degree to which physical surface X

cover and projected plant cover ameliorate the 
effect of raindrops impacting on the soil surface

Basal area of all perennial grasses 4 To estimate the “basal cover” of perennial grass X X
and/or the density of canopy cover of trees and 
shrubs

Litter cover, origin, degree of 10 To evaluate the amount, origin and degree of X X X
decomposition decomposition of plant litter
Cryptogam cover 4 To evaluate the cover of cryptogams visible on X X

the soil surface
Crust brokenness 4 To evaluate to what extent the surface crust is X

broken, leaving loosely attached soil material 
available for erosion

Erosion type and severity 4 To evaluate the type and severity of recent/ X
current soil erosion i.e. soil loss from the query 
zone

Deposited material 4 To evaluate the nature and amount of alluvium X
transported to and deposited on the query zone

Micro-topography 5 To evaluate the surface roughness for its capacity X X
to capture and retain mobile resources such as
water, propagules, topsoil and organic matter

Surface resistance to disturbance 5 To evaluate the ease with which the soil can be X X
mechanically disturbed to yield material suitable 
for erosion by wind or water

Slake test 4 To evaluate the stability of natural soil fragments X X
to rapid wetting

Soil texture 4 To classify the texture of the surface soil and relate X
this to permeability

X: The use of an indicator in index calculation. This study used soil surface feature scores to calculate LFA indices

indicator measures the state of a specific surface processes7.
Indices of stability, infiltration and nutrient cycling calculated
from the combination of 11 indicators (Table 1). The values of
infiltration, stability and nutrient cycling were expressed as a
percentage, the larger percentage, the better landscape
function 7. 

Statistical analysis: Data  were  analyzed  using SAS Proc
GLM8 as one-way analysis of variance (ANOVA) to find the
differences in stability, nutrient cycling and infiltration among
three distances 10, 100 and 1000 m. Means were compared
using the Scheffé test9. No violation of assumptions was
found. The significance level was 0.05.

RESULTS AND DISCUSSION

Moving  away  from  watering  points,  the condition of
soil surface indices; infiltration, nutrient cycling and  stability
is  getting  better  for  Artemisia  patches  and  interpatches
(Fig. 4a, b). Significant differences found among three
distances 10, 100 and 1000 m for three soil surface indices
infiltration, nutrient cycling and stability (p<0.05) (Fig. 4a). The
infiltration index at 10 m  from watering point was 11.94%
(Fig. 4b).

Significant differences in infiltration among different
distances were due to grazing intensity. The zone adjacent to
the watering point; the sacrifice area experiences a very heavy
grazing and trampling pressure10. The amount of soil water
infiltration was directly related to gradient from the watering
points11,12. The infiltration capacity of soils has been shown to
be reversely proportional to grazing pressure13,14. Overgrazing
decreased vegetation canopy protection and stemflow, the
ecological consequence of reduced infiltration was less water
in the reserve, resulting in reduced plant pulses and increased
amount and rate of runoff. 

Grazing removes vegetation protective cover and causes
water and wind erosion15,16. Soil compaction occurs around
watering points17-19. Reduction of patch density, length and
width decreases resources (litter, seed, nutrient) entrapment
and  increases  water and wind erosion20,21. Due to overgrazing
around watering point, water and nutrient cannot be
transfered into reserves and pulses of plant growth are
uncommon. Overgrazing decreased the stability of rangeland
landscape (stability in 10 m from the watering point was
25.1%) (Fig. 4b). The open patches within these two-phase
landscapes (overgrazing and undergrazing) are the source of
materials transferred into sinks, triggered (driven) by water
and    wind   processes.   Artemisia    patches   act   as   sinks   by
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Fig. 4(a-b): (a) Artemisia patches and (b) Interpatches in different distances in terms of three soil surface condition indices
(Stability, infiltration, nutrient cycling) in steppe zone Mojen
Bars with different letters are significantly different (p<0.05)

Fig. 5: Overgrazing decreases landscape feedback
(Reproduced with permission)27

trapping materials. Redistribution  of  resources  from 
overgrazed to undergrazed; reversed Robin Hood effect
caused in low infiltration rate and low vegetation22. Due to
overgrazing in the sacrifice area, the soil lichen crust and
nutrient cycling decreases23 (nutrient cycling of interpatch in
10 m from the watering point was 7.52%). As grazing pressure
increases soil biological crusts become less abundant and
landscape may be totally dysfunctional24-26 (Fig. 5). Increase in
the size and length of bare soil and decrease in density and
size of patches show dysfunctionality of landscape (Fig. 5).

However, excessive defoliation kills plants and reduces
patch density and size. Dysfunctional landscapes have
resources  leakage  that  resulting  in poor landscapes and
non-suitable habitats. Leaking of seed, litter, water and soil is
common in poor landscapes4. At the 10 m distance from
piosphere, most of the soil surface was actually traversed by
sheep tracks; this indicates high stocking pressure and
significance of livestock trampling on the soil surface
disturbance. Water and soil conservation is important for
sustainable   rangeland   management28.   Overgrazing   extinct
native plant and animal species. The chronic overgrazing

(results in patch size and density reduction) declines soil
surface condition indices, productive capacity and increases
in erosion. Soil lost by erosion at that time could never be
replaced.

Based on TTRP model, removal of perennial plant species
will decrease the capture of resources. Water and nutrients
captured and stored in these vegetation patches can trigger
pulses of the plant, animal and microbial growth (Fig. 1). These
biotic activities such as feedbacks build and enrich vegetation
patches, maintaining them as habitats and prepare them to
function again as obstructions with the water and wind
erosion29. Grass tussocks, obstruct water and the wind, reduce
raindrops and increase the water infiltration (64% infiltration
in Artemisia  patch in 1000 m from the watering point). In the
absence of vegetation patches, the soil will be eroded and
change the balance of landscape30,31. 

Livestock grazing decreased cover of vegetation patches.
In the tropical Savannas of Northern Australia, overgrazing by
cattle near artificial watering points changed patch structure4.
Results of this study agreed with the previous findings28,32-35.
The three indices of soil surface quality showed that livestock
has clear effects on landscape function. In this study, areas
close to the watering point were prone to degradation due to
overgrazing. LFA model provides a useful and fast indication
to detect changes in landscape structure and function around
watering points29,36. It is important to rebuild vegetation
patches, capture resources and balance resources31,37. It is
better to conserve landscape and then try to restore a
dysfunctional landscape. To rehabilitate landscapes, first
repairing fine-scale patch structures and then balancing
runoff/runon processes and conserving resources (e.g.
furrowing and seeding) and finally pulses of plant species
growth should be followed by the configuration and provision
of water sources and grazing management38. 
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CONCLUSION

According to this study findings range managers should
rebuild patches and the runoff/runon processes around
watering points and maintain the resources and build habitats
and biodiversity and reduce harmful effects of piosphere. This
study provides insight into the significant effects of grazing
pressure on landscape functionality in the study area.

SIGNIFICANCE STATEMENTS

This study discovers the possible statistically and
ecologically significant effect of grazing on landscape function
and this result can be of great benefit to herders and
managers. LFA monitoring around watering points provides
essential information for managing grazing pressure and
rangeland improvement and development plans. In addition,
this study adds to current knowledge and gives more
information about the grazing pressure in arid and semi-arid
rangelands. This study shows the application of LFA along
watering points and help the researchers to uncover the
landscape functionality response to various grazing pressure.
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