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Abstract
Background and Objective: Land use information is increasingly essential for knowledge of the environment mainly in the context of
global change. The objective of this study was to investigate the benefits of using field-collected ecological data and high-resolution
images to map different types of land cover and vegetation from a Landsat OLI 8 image. Materials and Methods: The selection of training
areas was made without and with the use of GPS data collected in the field and the google Earth tool. The supervised classification was
applied using the maximum likelihood algorithm Spectral Angle Maping. In addition, data collected in the field made it possible to
estimate above-ground biomass. Results:  The results obtained showed that land use maps made without input from both ecological
field data and Google Earth images have classes that are highly contaminated with pixels from other classes. The overall accuracy was
estimated by applying the Intergovernmental Panel on Climate Change (IPCC) good practices It goes from O = 92.7% for the first map
produced to O = 89.8% for the second map. In addition, the average carbon stock in our study area is estimated at 112 MgC haG1 while
it varies from 84 -213 MgC haG1 in areas of land forests to and in areas of seasonally flooded forests. Conclusion: This small-scale study
highlights several challenges to be addressed in reducing emissions from deforestation and forest degradation (REDD+) before arriving
at a very accurate final map of land use in the intertropical zone.
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INTRODUCTION

Land use information is increasingly essential for
knowledge of the environment, its development and
management1,2. It is a fundamental variable for regional
planning as well as for studying and understanding the
environment3. According to the FAO4, land use refers to quot
the  biophysical cover of the surface of the land" and
therefore, the type of use (or non-use) made of the land by
humans. Indeed, the mapping of the different types of land
use is an important and indispensable tool in several fields
such as: the environment, inventory, ecosystem management
and land use planning. This makes it possible to take an
inventory of the resources of an environment, to understand,
analyze and monitor the evolution and changes in land
cover5,1.

The department of Likouala, is the department with the
largest area of forests in the Republic of Congo, nearly 85% of
the department. Recent studies have shown that population
growth, the influx of civilian war refugees from the Democratic
Republic of the Congo, Central Africa and Rwanda, population
growth, urban growth and the development of both artisanal
and industrial agriculture are profoundly changing the face of
land use in this department 6, 7. All these activities have impact
not only on the floristic biodiversity of forest species, on forest
structure, but also on the aerial carbon stock8-10.

The possibility offered by remote sensing technology to
access an overview of vast territories offers the possibility of
mapping the different types of land use to an overview of
large areas but also to complex and dangerous territories1,11,12.
This technique allows, using one or more sensors, to acquire
information on an object, surface or phenomenon without
direct contact with the object, surface or phenomenon being
investigated, satellite images obtained by this technique are
the main source for the production of the various land use
maps11,13.

However, it is still difficult to really identify from satellite
images provided by remote sensing, the different types of
vegetation land use that exist without prior knowledge of the
terrain. The acquisition of field data is necessary to achieve a
supervised classification of satellite images14. Decent field
conditions are therefore important in order to really describe
the different types of vegetation land use. Sellin et al.15 using
high-resolution images (Spot 5, Worldview-2 and BDORTHO
IRC) in their study state that: Regardless of the image, the
results show too much confusion between vegetation for the
procedures to be used as they are. This, is particularly true in
tropical areas in general and in the Likouala department
where  several  studies  highlight  not  only  the existence of a

high floristic biodiversity, but also several types of
vegetation16, 17, 9. The field truth in this field and the few studies
that exist address this subject in a lapidary way with the
exception of Regrain's study18  which made an in-depth study
on the field truth in the process of map making. It is in this
context, this study was done in order to highlight the
importance of field truth in the validation of the final maps.
The objective of this study was to map the different types of
land use in the study areas and to present statistics on the
accuracy of these maps in both cases: (a) Production of the
map without coupling field data, (b) Production of the map
with input not only from images provided by Google Earth,
but  also  ecological  data  collected  during   field   visits  and
(c) Compare  the  global  carbon map with the carbon map
from in situ  with the data collected in the study area in the
context of REDD+.

MATERIALS AND METHODS

Location of the study area: This study was carried out in the
northern part of the Republic of the Congo, more specifically
on the Impfondo-Dongou axis located in the department of
Likouala (Fig. 1). The climate of this department is similar to
the equatorial and humid tropical climates of the Guinean
forest type (Fig. 2). This climate is characterized by: rainfall of
1600-1800 mm with interannual variability of 10-15%, a dry
season of 40 days from December-January, an intra-rainfall
decrease in July, an average annual temperature of 25-26EC
with an amplitude of 1-2 and a diurnal amplitude of 9-140, a
relative humidity of 84-86% throughout the year19.

The vegetation around this department is mainly forest.
There are species of great commercial value such as Sapelli
(Entandrophragma  cylindricum  (Sprague)  Sprague, Sipo
(Entandrophragma utile (Dawe and Sprague) Sprague,
Wengué (Millettia laurentii  (Welw.) C. C. Berg and Padouk
(Pterocarpus soyauxii  Taub).

Methods
Land cover mapping: This study was made possible by
downloading a Landsat Operational Land imager (OLI) image
of the Impfondo area in February, 2016, scene 181-59 from the
USGS website (Earth explorer, https://earthexplorer.usgs.gov/).
The image has a spatial resolution of 30 m. The images have
the same spatial resolution, i.e., 30 m. A set of pre-processing
operations was performed on the selected image of the study
area before classification. Then the post classification was
done on this image before the final map was produced. All
these  steps  were  completed  using  the  free  software  QGIS
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Fig. 1: Location of the study area

Fig. 2: Umbrothermal diagram of Likouala (1932-2015 average), ANAC Congo (2016)

version 2.18.  The technique of colour composition was used
to obtain the best visualization of the objects in the image.
The Landsat OLI sensor has eleven spectral bands. This large
number of channels allows  to  try  multiple  combinations of

3 channels to obtain synthesis in additive colors highlighting
the different themes. In the context of our study, whose main
objective is to analyze plant spaces, several combinations
were  used.  The  following  strip  composition  7.5 and 4 was
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Fig. 3(a-c): View  of  the  dense  forest  on Google Earth and landsat image, (a) Dense forest (2013), (b) Dense forest (2016) and
(c)  Pixel (2016) (composite color)

Fig. 4(a-b): View of the Savannah on Google Earth and landsat image (2016), (a) Image Google Earth (2016) and (b)  Pixel (2016)
(composite color)

applied to obtain a final composite image for this study. The
visual interpretation of the images after the colour
composition made it possible to identify training areas. The
delimitation of these training areas was reinforced by the
network of GPS point  data  collected  in  the field and Google
Earth images (Fig. 3-5 and 6). The latter made it possible to go
back a few years before 2016 in order to verify if the land use
in 2016 was the same as in previous years by displaying
historical images in the same GPS point.

To this tool, the data collected in the field during the 2015
and 2016-2017 descents were linked. This method made it
possible to categorize 7 land use classes: secondary forest (FS),
dense forest (DF), savannah, water, urban, degraded area and
agriculture. Dense forest is a main class with 2 subclasses:
primary land forests, as well as semi-flooded primary forests
that are fairly well responded to in the study area. The

secondary  forests  in the study area developed mainly on
land, as most of the land conversion takes place on land
forests. The secondary forest is identified from the spectral
signature at a given point and confirmed using the Google
Earth tool.

The  supervised  classification  was  applied to the image
of  the   study  area  after  selecting  the  different training
areas for the different land cover classes using the Spectral
Angle Maping algorithm. The quot, Spectral Angle Mapper"
algorithm is a physics-based spectral classification that uses an
n-D angle to match pixels to reference spectra. The algorithm
determines the spectral similarity between 2 spectra by
calculating the angle between the spectra and treating them
as vectors in a space whose dimensionality is equal to the
number of bands. This technique, when used on calibrated
reflectance   data,   is   relatively    insensitive    to   illumination

21
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Fig. 5: View of the burnt area on (a) Google Earth and (b) The landsat image (2016)

Fig. 6: View of the agricultural zone, oil palm on Google earth
and on the Landsat image

and  albedo  effects20.  This  made  it  possible to highlight the
different types  of  land  use  and then to edit the land use
map.

The first land use map was made based only on training
areas based on the visual appearance of Landsat pixels. Thus,
5 land use class points had been selected: urban area, dense
forest, degraded area, savannah and water.

The  second  land  use  map  of  the   same   area  was
made by combining  both  Google  Earth   data    and
ecological data collected  during  field  visits.  This  made  it
possible to map the agriculture class and the secondary forest
class.

Assessment of the accuracy of the land use map: For the
assessment of the accuracy of the land use map, the good
practices established by Olofsson et al.21  were applied to the
final land use map. The objective of the accuracy assessment
is to quantitatively  assess  the  effectiveness  of the
classification, i.e., to verify whether the pixels sampled in the
land cover classes on the image have been correctly classified
in relation to the land cover. For this study, 320 control points
were distributed in the different classes on the classified map
to measure the accuracy of the classification. The verification
of sampling points is done by combining data from Google
Earth tools with data collected in the field during previous
missions in 2015, 2016 and 2017. The number of points per
class is unevenly distributed according to the size of each
class. The producer and user error were calculated as well as
the overall accuracy of the analysis.

Forest inventories: A total of 17 plots of unit 25×25 m were
installed from across the study area in secondary, dense
forests (dry land forests, seasonally flooded). In order to avoid
any bias in the estimation of above-ground biomass, four
points, representing 25×25 m plots, were generated and
distributed in the Impfondo urban area using QGIS 2.18
software. These plots were physically installed in the field to
collect the data required to calculate the above-ground
biomass.

Within each 25×25 m  plot,  all  trees with a diameter of
>10 cm have been inventoried. For each tree, the following
data were collected: the diameter (dbh) of the tree measured
at 1. 30  m from the ground, with a tape measure, the name of
the species with the help of a local guide through the
vernacular names, the height of the trees with a vertex (Laser)

22
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Fig. 7(a-b): Land occupancy (a) Map 1 and (b) Map 2 of the study area

In plots  where  the  height  values  were not measured with
the laser,  the   allometric   equation  (Eq. 1) had been
applied22:

H = 45.1-42.8* exp (-0.025* D) (1)

where, D is  the  diameter  of  the   tree   in   cm  measured  at
1. 30 m from the ground.

Above-ground biomass estimation: The above-ground
biomass of the various trees in the study area was estimated
by  applying  the  allometric equation of Chave et al.22, (Eq. 2).
This equation takes into account the diameter, specific density
of the wood and the total height of the tree and provides a
better estimate of the above-ground biomass of trees
compared to the equations of Feldpausch et al.23 and provides
accuracy of up to 90% in biomass estimates in 0.25 ha plots in
humid tropical forests. The total height of the trees was
estimated from Eq. 1. The specific wood densities of each tree
inventoried were extracted from a global database24. The
above ground carbon stock of each tree is obtained by
applying the fraction of carbon 0. 49 t MSG1 applied for woods
and trees of DBH greater than or equal to 10 cm in diameter.
Aerial carbon stocks were calculated for the different forest
types in the study area but also for the different forest
groupings.

AGB = 0.0673*(di*(Dbhi)^2)*H total (2)

Where:
Dbhi = Diameter of the tree in centimetres (cm) measured

at 1.30 m
di = Specific density of the wood, H total: Total height of

the tree

RESULTS

Primary land use map of the study area and precision
analysis: The first land use map (Fig. 7a) before Google Earth
field data and tools were considered revealed the presence of
three vegetation types in the study area with a dense forest
class  dominance.  This map shows that 80% or nearly
17860.14 ha of the study area, was covered by dense forest,
followed by the degraded area class which covered 10% of the
study area with 2228.4  ha. The urban area occupied 606.78 ha
of the study area. Analysis of high-resolution images of the
study area by Google Earth archives showed that some of the
degraded area was actually a mosaic of several types of
vegetation including both type 1 fallows, type 2 fallows but
also small islands of forested area including both local forest
species, but also fruit trees, oil palm trees, small agricultural
plots, which are very difficult to map.
Indeed, in the study area, the land problem means that

not all families have access to large areas to carry out their
agricultural activities. This observation made in the field makes
it possible to say that the high precision of the user's precision
for the degraded forest class (U = 90. 90%) must be put into
perspective   for   the   reasons   mentioned   above.   The  user

23
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Table 1: Land occupancy Map confusion matrix 1
References
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Map classes Water Dense forest Savannah Urban Degraded zone Total Area Water Users
Water 2 0 0 0 0 2 187.92 0.009
Dense forest 0 98 0 1 5 104 17860.14 0.809 0.942308
Savannah 0 0 4 1 0 5 1186.65 0.054 0.8
Urban 0 0 1 3 0 4 606.78 0.027 0.75
Degraded zone 0 1 1 0 20 22 2228.4 0.101 0.909091
Total 2 99 6 5 25 137 22069.89 1
Water 0.009 0 0 0 0 0.0085 187.92 0.009
Dense forest 0 0.7626 0 0.0078 0.039 0.8093 17860.14 0.809
Savannah 0 0 0.043014 0.0108 0 0.0538 1186.65 0.054
Urban 0 0 0.006873 0.0206 0 0.0275 606.78 0.027
Degraded zone 0 0.0046 0.00459 0 0.092 0.101 2228.4 0.101
Total 0.009 0.7672 0.054477 0.0392 0.131 22069.89 1
Producer's 0.99 0.99 0.79 0.5266 0.702
Overall 0.927
Area estimates 188 16.931 1.202 864.15 2884 22.070

accuracy varies from 75-94% while the producer accuracy
varies from 52-99%. The dense forest (DF) class has a user
accuracy of 94.23% (Table 1), suggesting that this class is
stable where there are fewer disturbances. This is not the case
near the urban area.  Also,  field investigations have shown
that in some places some pixels have been wrongly attributed
to the dense forest when they are actually secondary forests
to Musanga cecropioides R. Br. or plots of forests rich in
Macaranga spinosa  Müll.  Arg. It should also be noted that not
all classes with a minimum mapping unit of less than 4 pixels
were selected during mapping. Despite the fact that the
overall accuracy of this map is 92.7%, it did not allow other
classes of sub vegetation under the degradation class to be
properly mapped. Certainly, the source data used to prepare
the reference data with the help of a Landsat image did not
allow all vegetation subclasses in the degraded area to be
identified.

Secondary  land  use  map  of the study area: The second
land  use  map  (Fig.  7b)  made  with  the  support of very
high-resolution images in the choice of training areas allowed
us to improve the quality of the selected polygons before
launching the classification using the Spectral Angle Maping
algorithm. The images provided by Google Earth archives
made it possible in this case to distinguish different types of
vegetation in the degraded area class such as oil palm
plantations, agricultural fields. Thanks to the historical image
tool, this tool has also made it possible to monitor the
dynamics of the occupation of certain parcels of forest land
that have been converted into secondary forest. However, the
field data made it possible to better understand the high
biodiversity of the vegetation in the degraded area with the
existence of several types of fallows (type 1, 2) but also to

collect GPS points which, coupled with existing data,
improved the quality of the selection of training areas. The
following classes were selected: secondary forest, dense forest,
savannah, sand, water, urban, degraded area and agriculture
class. The overall accuracy of this second land use map is
89.68%. User accuracy ranges from 57-98%, while producer
accuracy ranges from 57.14-84.62 (Table 2) for the main land
use classes in the study area. The classification results showed
that the dense forest and secondary forest classes are the two
most  important  first  classes in the study area occupying
60.35 and 12.45% of the total area, respectively. The secondary
forest class thus represents a very large area of the study area
(Fig. 7b). This in the study area was found in sometimes very
unexpected areas within the dense forest class as shown in
Fig. 8 (Fig. 8a-c) where an area of 19.15 ha of forest land was
cut during 2008 for agricultural activities in 2008. This
agricultural land, which was later abandoned, has undergone
a recolonization of forest vegetation (Fig. 8b). Ecological data
collection in the field had indicated that this abandoned land
8 years earlier is  a  secondary  forest  Musanga cecropioides 
R. Br. with the presence of some growing natural forest
species. In this case, remote sensing by Landsat images cannot
provide details on the nature of the growing plant species in
the area, details that only in situ data collection has provided.
A comparative analysis of the results of the first and

second land use maps of this study area showed that the
different land use classes show fairly significant changes in
forest cover from one class to another. Thus, the area of the
dense forest class increased from 17860.14-13321.10 ha, a
difference in area of 4539. 04 ha. On the other hand, the area
of the degraded area increased from 2228.4 ha in the first map
to 3824.55 ha in the second map, an increase of 1596. 15 ha in
the area  estimate  for  this  class.  The  agricultural  class has a
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Fig. 8(a-c): Vegetation dynamics at a given point in the study area (a) Google Earth (2008), (b) Google Earth (2016) and (c) Image
OLI (2016) 

Table 2: Soil occupancy Map confusion matrix II
References
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Secondary Dense Degraded

Map classes forest forest Savannah Water Urban zone Agri Total Area Water Users
Secondary forest 33 0 0 0 0 5 2 40 2748.78 0.124548876 0.82799
Dense forest 1 190 0 0 0 2 0 193 13321.1 0.603586153 0.9837
Savannah 0 1 6 0 0 1 2 10 716.31 0.032456437 0.5777
Water 0 0 0 3 1 0 0 4 267.12 0.012103368 0.77458
Urban 0 0 0 0 3 0 0 3 239.94 0.010871826 0.86232
Degraded zone 8 0 1 0 0 44 2 55 3824.55 0.173292663 0.79346
Agriculture 1 0 1 0 0 4 8 14 952.11 0.043140677 0.5795
Total 43 191 8 3 4 56 14 320 22069.9 1
Secondary forest 0.103125 0 0 0 0 0.0156 0.00625 0.124548876 2748.78 0.124548876 0.82799
Dense forest 0.003125 0.59375 0 0 0 0.0063 0 0.603586153 13321.1 0.603586153 0.9837
Savannah 0 0 0.01875 0 0 0.0031 0.00625 0.032456437 716.31 0.032456437 0.5777
Water 0 0 0 0.00938 0 0 0 0.012103368 267.12 0.012103368 0.77458
Urban 0 0 0 0 0.0094 0 0 0.010871826 239.94 0.010871826 0.86232
Degraded zone 0.025 0 0.00313 0 0 0.1375 0.00625 0.173292663 3824.55 0.173292663 0.79346
Agriculture 0.003125 0 0.00313 0 0 0 0.025 0.043140677 952.11 0.043140677 0.5795
Total 0.134375 0.59375 0.025 0.00938 0.0094 0.1625 0.04375 1 22069.9 1
Producers 0.76744186 1 0.75 1 1 0.8462 0.57143
Overall 0.896875
A (pixels) 2965.64147 13104 551.747 206.905 206.91 3586.4 965.558 22069.89
A (ha) 266.907732 1179.36 49.6573 18.6215 18.621 322.77 86.9002

total area of 952 ha. This agricultural area could not be easily
extracted in the first map because it was mixed with the
degraded area, which is a complex mixture of fallow land,
forest islets, small abandoned agricultural plots of <0.09 ha in
size.

Carbon  stock in the study area and carbon map: The
average  carbon  stock  in  the current study is estimated at
112  MgC haG1 while it  varies from 84-213 MgC haG1 in the
land forest areas of Celtis adolfi-friderici Engl and in the
seasonally flooded forest areas. The differences are quite
significant  between  the  carbon  stocks  of  the different
forest  types.   Indeed,   in   the   MSDS   (secondary   forest)   at

Musanga cecropioides R. Br. and the FTF (land forest) which
are forests at Celtisadolfi-friderici  Engl., carbon stocks range
from 83-141 MgC haG1, have a significantly low carbon stock
than the seasonally flooded forest with which carbon stocks
range from 110-212 MgC haG1. In the area where ecological
biomass data have been collected, the regular presence in
some  plots  of  either  the  species   Lophira   alata   Banks  ex
P. Gaertn. or the species Guibourtia demeusei (Harms) J.
Léonard have noted in the study area of Impfondo.
In addition, there is significant carbon stock variability

within the secondary forest between study plots. Carbon
stocks range from 21 MgC haG1 in young forests at Macaranga
spinosa  Müll. Arg. to 84 MgC haG1 in adult secondary forests
of Musanga cecropioides R. Br.
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DISCUSSION

This study once again shows the importance of using
satellite images and Landsat in particular to map the different
types of land use in a given territory. Several authors in the
Congo Basin, West Africa and around the world have made
efforts over the past decade to map different types of land
use25-28. These images have the ability to have a synoptic view
of the landscape and have the ability to inventory the
geographical objects that make up the space29. However, the
production of these maps suffers from a problem of
cartographic accuracy related to several factors: image
resolution, the type of satellite sensors, the software used to
process the images, but also errors related to image users.
The accuracy of the card gave a value of 0.99% for the first

card and 0.89% for the second occupancy card of the card. The
difference in accuracy values can be explained by the fact that
during the production of the first map a set of small land use
classes were combined into a single land use class of the
degraded area class. The breakdown of the homogeneous
class degraded area into other subclasses makes the
distinction between agriculture and secondary forest classes
more complex. This could explain the decrease in the overall
accuracy of the study area obtained in the second land use
map obtained by combining both field data and Google Earth
images.
The differences in user precision obtained in the land use

map 2 show the difficulty of being able to map classes with
great accuracy where there are pixel confusions. This is the
case for the agriculture class in the study area with an
accuracy of 0.5795, a relatively low accuracy compared to the
other occupation classes where we noted for the dense forest
(DF) class 0. 98% and for the secondary forest 0.82%. The
difficulty in visually discriminating between the agricultural
and savannah classes is due to the similarity of spectral
signatures. This justifies the confusion noted between
savannahs and agricultural plots.
Several authors  had  to perform the validation using

high-resolution images1,30,31. However, field data are important
to better understand the different types of land use in the
study area and to allow for proper validation of the final
maps32. According to FAO33, remote sensing is not a substitute
for collecting good and always important field data, but by
combining these two techniques, the best results are obtained
than one or the other employee alone. Also, the high cost of
very high-resolution images is an obstacle for these studies in
our working environment where access to the Internet. This
prevents this study from having access to the Internet to use
Google Earth.

However, it should also be noted that within the
framework of the gaps that exist between the map and the
points collected  in  the  field,  it  is important to ensure that
the image used is recent, <2 months before the descent into
the field on the one hand and on the other hand it is necessary
to check the season of shooting the image as well as the
period when the team decides to go to the field for data
collection because, the climatic conditions generally favour
the growth of vegetation. The study area is characterized by
heavy rainfall around 1700 mm and relative humidity around
85%19. These parameters promote the emergence of seed
dormancy, the stimulation of plant growth especially since
temperatures are around 26.5EC19. These confusions have also
been noted by some authors in the literature who had stated
that medium resolution images (30 m) have some limitations,
some classes are not well discriminated, confusion is
inevitable32.
The problem of the truth of the terrain is important in the

intertropical zone because of the dynamics of the vegetation,
which is very positive. Several authors in the literature had
demonstrated that field truth is very important for
classification studies by remote sensing34,18,14.

According to Godard35, despite the use of high-resolution
satellites such as SPOT1 or Landsat TM, to produce land use
maps, land reconnaissance is essential. This was also
highlighted by Hassan11 in his study, who stated that while
satellite images and aerial photographs are very useful for
studying the evolution of land use for a given environment,
there must also be field study to validate satellite images and
complete them with photographs that allow a good approach
to be taken for certain phenomena". Field truth allows the
correction of errors in the different classes due to image
processing and improves the accuracy of the final
cartographic product, it is very important in map
validation36,33,18,14. The significant degradation observed in the
study area reflects the impact of anthropogenic activities on
the decline in dense forest area. Studies conducted in the area
have highlighted the following socio-economic activities:
burning cultivation, timber and fuelwood exploitation, urban
growth6,7.
Several authors37,38 have questioned population growth

and certain farming methods as being responsible for land
degradation resulting in the disruption of local or regional
ecological and climate balances. This is particularly remarkable
in sub-Saharan Africa, where high population densities and
the crisis in agricultural space are leading people to seek new
land39,40, which explains why the level of degradation is
increasing significantly from the forest to the urban area,
leading to the loss of forest plant biodiversity but also to the
loss of biomass8,9.
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Fig. 9: Above-ground biomass of the study area

Comparison of in situ carbon stocks with the global carbon
map: The comparison of carbon stocks between field data
collected in the study area and the values extracted from the
map from the Avitabile et al.41 shows a very significant
differences across the entire study area in forest vegetation
and savannah vegetation areas (Fig. 9).  In urban areas, carbon
stocks are low and close to zero according to this study by
Avitabile et al.41. A recent study stated that around some cities
of the north of the Republic of the Congo above-ground
stocks range8  from 0.1-5.75 MgC haG1.
While  the  maximum   carbon   stock   in   our   study  is

213 MgC haG1, it is 376 MgC haG1 in this study. Similarly, in
savannah areas, carbon stocks are 8 MgC haG1, studies on the
estimation of above-ground biomass by Yoka et al.42 in the
savannah  of  the  Congolese  Basin   indicate   a   biomass  of
04 MgC haG1.

Several forest structural parameters explain this difference
in biomass between the mature forests in the study area and
secondary forests: number of stems, number of species,
number of families, basal area, density/hectare within forest
types, which influences their carbon stocks. Structural
parameters such as density and basal area decrease with the
level of forest disturbance10,
These results revealed the need for the REDD+ process

and the assessment of efforts to reduce greenhouse gas
emissions from the forest sector not to use the globally
published carbon maps for calculating greenhouse gas

emissions because of significant differences in carbon stocks
at the pixel scale or at any given point.

CONCLUSION

The results of this study show that remote sensing is an
important tool for discriminating between different types of
land use, but this requires a field trip to verify the validity of
interpretations made from the images and improve
classification results. The homogeneous classes have been
well classified. In addition, heterogeneous vegetation classes
are a problem in distinguishing between different types of
actual land use regardless of image resolution. The field
mission carried out in the study area allowed us to know the
importance of the field truth, on the one hand to capture the
real land use types that exist and on the other hand to
improve the estimation of overall accuracy  but also to collect
biomass data that compared to global data show very
significant gaps. As part of the REDD+ process, more efforts
should be made to achieve a high level of accuracy in the
development of forest carbon maps.

SIGNIFICANCE STATEMENT

This study discovers the importance to combine field
truth data with high-resolution image to produce vegetation/
biomass maps in intertropical areas where forest vegetation is
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characterized by the very high variability of flora biodiversity
but also of the flora structure. This study is very beneficial for
the Republic of Congo in the context of climate change
mitigation and the production of different vegetation and
carbon maps, mainly if we consider REDD+ processes. This
study will help the researcher to discover critical areas of
remote sensing and the use of ecological data in the tropical
zone that many researchers have not been able to explore.
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