

Research Journal of **Environmental Toxicology**

ISSN 1819-3420

Research Journal of Environmental Toxicology 6 (2): 51-58, 2012 ISSN 1819-3420 / DOI: 10.3923/rjet.2012.51.58 © 2012 Academic Journals Inc.

Radon-induced Chromosome Damage in Blood Lymphocytes of Smokers

C. Meenakshi and Mary N. Mohankumar

Indira Gandhi Centre for Atomic Research, Radiological Safety Division, Kalpakkam-603102, Tamil Nadu, India

Corresponding Author: Mary N. Mohankumar, Indira Gandhi Centre for Atomic Research, Radiological Safety Division, Kalpakkam-603102, Tamil Nadu, India Tel: +91 44 27480500x23439 Fax: +91 44 27480235

ABSTRACT

In order to investigate the synergistic effect of smoking and radon in the absence of confounding factors, an *in vitro* study was carried out to compare chromosome aberrations in blood lymphocytes of smokers and non-smokers. Blood samples were exposed to different concentrations of radon ranging from 0 to 35643.223 kBq m⁻³ corresponding to mean doses of 2.9±0.27 mGy (non smokers) and 2.7±0.25 mGy (smokers) using a simple, portable irradiation assembly. Chromosome aberrations in giemsa stained first division metaphase preparations were scored. The results show that compared to nonsmokers there is a significant increase in radon-induced dicentrics, acentric fragments and chromatid breaks in smoker cells. The study implies that chromosomes in smoker cells are more unstable to radon exposure and thus the effect acts synergistically to the risk of cancer.

Key words: DNA damage, radon, smokers, synergistic effect, chromosome aberrations

INTRODUCTION

Radon is a naturally occurring alpha emitting radioactive gas present in the atmosphere, homes and workplaces causing a great deal of health concern. It is emitted from uranium, a naturally occurring mineral in rocks and soil. The natural decay of uranium in building stones, bricks, soils and bedrocks produces the radioactive gas, therefore radon seeps into and accumulates inside buildings (Salameh *et al.*, 2011). It has been pointed that the concrete slab of a house is more exposed to weathering and therefore more susceptible to cracking, favorising the radon suction inside the building (Gaso *et al.*, 2005).

Radon has been identified to be the second largest cause of lung cancer next to smoking. Increasing radon concentration in respiratory gases and also in respiratory tract will cause the related tissues to be exposed to the alpha radiation produced by radon decay and its products and finally will increase the risk of lung cancer (Talaeepour et al., 2006). Environmental tobacco smoke emanating from cigarette consumption is one of the most common indoor air pollutants (Ebisike et al., 2004). The incidences of lung cancer are significantly higher in smokers and female smokers are more prone compared with the male smokers (Zafar et al., 2003). Most lung cancer and emphysema, as well as high percentage of heart attacks are caused by cigarette smoking (Colagar et al., 2007). Strong epidemiologic evidence links smoking and cancers, suggesting that smoking is the leading cause of lung cancer related mortality (Naddaf, 2007; Eichholzer, 2000; Tomida et al., 2005).

Smokers living in environments with high radon concentrations are estimated to be at an elevated risk of lung cancer. However, this estimate is solely based on epidemiological studies and the association between radon and smoking alone has not been well established. Thus the combined effect of smoking and radon still remains controversial in risk assessment. Besides, as most studies have been conducted on miners it is not certain if the synergistic effect often contended to be multiplicative (Lee *et al.*, 1999) in nature is solely due to the interaction of radon gas with smoker cells or to other factors such as mineral dusts present in the mining environment.

Cytogenetic damage has proved to be a trustworthy biomarker of cancer risk. Moreover, there are sufficient reports to prove that radon causes cytogenetic damage in peripheral blood cells suggesting that radon inhalation can cause DNA damage in cells other than those in the lungs (Hagmar et al., 1998; Zaire et al., 1996; Lehnert and Goodwin, 1997; Alavanja, 2002). The present study was conducted to investigate the synergistic effect of smoking and radon using cytogenetic biomarkers.

MATERIALS AND METHODS

Study group: Blood samples were collected using heparinised Vacuette tubes (Greiner Labortechnik, Austria) by vein puncture, after prior consent, from apparently healthy smoking and non-smoking individuals working at the Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam. A detailed questionnaire containing information about occupational exposure to radiation, personal habits, alcohol consumption, frequency and period of smoking etc., was prepared. There were 25 nonsmokers aged between 24 and 56 years and 25 smokers aged between 21 and 54 years who smoked about 6-16 cigarettes per day for periods ranging between 7 and 30 years. All participants belonged to the same ethnic group and were neither engaged in radiation work for over 3 years nor did they differ significantly in their dietary habits. Among the non-smokers, none had ever been a smoker.

Irradiation procedure: A novel irradiation technique developed at Radiological Safety Division of IGCAR was used for irradiation of blood sample. Details of the experimental set-up and irradiation are given elsewhere (Hamza et al., 2008; Hamza and Mohankumar, 2009). About 5 mL blood sample collected from 25 smoking and 25 non-smoking volunteers was divided into two aliquots of equal volume. One was treated as control and the other exposed to radon doses ranging between 0.9 and 5.2 mGy with a mean dose of 2.9 mGy (non-smokers) and 2.7 mGy (smokers). Doses were estimated using a Lucas cell and an alpha counter.

Chromosome aberrations assay: Cultures for the chromosome aberration assay were initiated by adding 1 mL of whole blood to 9 mL RPMI 1640 containing 100 U mL⁻¹ penicillin, 100 μ g mL⁻¹ streptomycin and 1 mL of fetal bovine serum. Bromodeoxyuridine to a final concentration of 10 μ M was added to differentiate first division cells. PHA was added to a final concentration of 5 μ g mL⁻¹ phytohemagglutinin and incubated for 48 h in 5% CO₂ atmosphere. At 45th hour, colchicine (Sigma) to a final concentration of 0.04 μ g mL⁻¹, was added to arrest cells at metaphase. Cultures were harvested at 48 h and subjected to a hypotonic treatment of 0.56% KCl. Cells were washed and suspended in Carnoy's fixative, cast on microscope slides, air-dried, stained with giemsa and scored for aberrations in first division metaphases.

Metaphases were captured using an automated metaphase finder system (Metasystems, Germany). Individual metaphases obtained from non-exposed as well as *in vitro* radon exposed smokers and control samples were carefully analyzed and the aberrations were noted onto scoring sheets. Aberrations present in radon exposed cells were subtracted from their respective controls.

Statistical evaluation: The percentage of aberrations for each individual was calculated. The mean and standard error for individuals falling within a selected group was computed and the data was tested for significance using the InStat program.

RESULT

Table 1 shows the frequencies of chromosomal aberrations induced in smokers and nonsmokers. Acentric fragments and chromatid breaks were observed in the controls of smokers and non-smokers whereas dicentrics were observed only in smoker controls. The mean percentages of dicentrics, acentric fragments and chromatid breaks among the exposed smoker group were 1.60±0.202, 1.83±0.186 and 1.486±0.211, respectively and these values for exposed non-smokers group were 0.923±0.156, 1.128±0.159 and 0.842±0.139, respectively.

The mean percentages of dicentrics, acentric fragments and chromatid breaks among the control smokers group were 0.0047±0.0047, 0.055±0.021 and 0.081±0.031, respectively. The mean percentage of acentric fragments and chromatid breaks among the control non-smokers group were 0.053±0.027 and 0.049±0.031, respectively.

Frequencies of dicentrics, acentric fragments and chromatid breaks were significantly elevated in exposed smoker group than that of control smoker group (p<0.0001). The frequency of acentric fragments and chromatid breaks of exposed non-smoker group were also extremely significant compared to control non-smoker group (p<0.0001). Figure 1a shows metaphase spread from a normal cell and Fig. 1b shows metaphase spread with aberrations. Figure 2 shows regression plot of total aberrations in smoker controls and non-smoker controls as a function of age.

Table 1: Frequencies of chromosome aberrations induced in smokers and non-smokers (controls and in-vitro radon exposed)

Group of workers	No. of donors	No. of cells	No. of dicentrics (% ±SEM)	No. of acentric fragments(% ±SEM)	No. of chromatid breaks (% ±SEM)
Controls (S)	25	18249	0.0047 ± 0.0047	0.055 ± 0.021	0.081 ± 0.031
Non smoker (exposed)	25	14973	0.923 ± 0.156	1.128±0.159*b	0.842±0.139*b
Smoker (exposed)	25	13362	1.60±0.202*b, *c	1.83±0.186*a, *b	1.486±0.211*b, *c

S: Smoker, NS: Non smoker, *a: Very significant, *b: Extremely significant, *c: Significant, non-smokers control and *in vitro* radon exposed shows extremely significant (p<0.0001), exposed non-smokers and smokers shows very significant (p<0.005) and significant (p<0.01) results

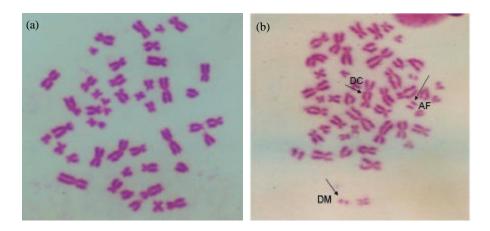
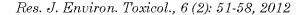



Fig. 1(a-b): (a) Metaphase spread from normal cell and (b) Metaphase spread with dicentric (DC), acentric fragment (AF) and double minute (DM) aberrations

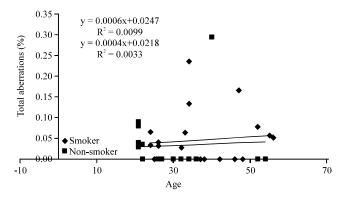


Fig. 2: Frequencies of total aberrations in control smokers and non-smokers as a function of age

DISCUSSION

Chromosome aberrations are considered to be precursors and early biomarkers of cancer, aiding in early diagnosis and disease prevention. Tobacco consumption is positively correlated with accumulation of DNA damage. The DNA damaging agents found in tobacco include benzo(a)pyrene (B(a)P) and tobacco-specific N'-nitrosamines that exhibit carcinogenicity (Huberman *et al.*, 1976; Hoffmann *et al.*, 1982; Preston-Martin and Correa, 1989). Thus tobacco constituents are proven carcinogens and are known to induce significant chromosome aberrations in blood cells of smokers (Bilban and Jakopin, 2005; Obe and Herha, 1978; Vijayalaxmi and Evans, 1982; Littlefield and Joiner, 1986; Sinues *et al.*, 1990). Similarly, radon being a radioactive gas is a proven inducer of DNA damage. Reports indicate statistically significant increase of chromosome aberrations in uranium miners occupationally exposed to ²²²Rn compared to controls (Leggett and Eckerman, 2001). Bauchinger *et al.* (1994) and others have shown an increase in dicentric and ring chromosomes in blood lymphocytes of persons living in houses with very high radon concentrations (Mai, 2007).

Although, smokers exposed to radon are estimated to be at an elevated risk of cancer the extent of synergism may be dependent on the frequency of smoking and other environmental and lifestyle factors to which individuals may be exposed. Besides, data available on the synergistic effect of radon and smoking comes exclusively from miners. Cytogenetic studies on occupational workers including miners and those employed in nuclear fuel manufacturing, indicate, exposure to low levels of ionizing radiation and smoking cause significant increase in all types of chromosomal aberrations such as gaps, breaks, acentric fragments, exchanges, dicentrics and polyploids (Kandar and Bahari, 1995; Martin et al., 1991; Prabhavathi et al., 2000; Al-Sabti et al., 1992; Dias et al., 2007). Prabhavathi et al. (1995) observed significant increase in SCEs among smokers and non-smokers exposed to uranyl compounds compared to their respective controls. However, Chung et al. (1996) and Tawn and Whitehouse (2003) did not observe such an increase in smokers occupationally exposed to radiation.

The present study is the first of its kind to investigate the interaction of radon and smoking sans confounding factors, as smoker cells were exposed *in vitro* to radon. The elevated frequencies of chromosome aberrations noted in this study are sufficient proof of the synergistic mode of action. Similar effects have been reported in smokers occupationally exposed to pesticides (Rupa *et al.*, 1988, 1989) and chemicals (Sorsa *et al.*, 1983).

In the present study there was one smoker (control) who had dicentric chromosome aberration and this could be attributed to radioactive polonium and lead in cigarette smoke (Tahir and Alaamer, 2008; Skwarzec *et al.*, 2001; Khater, 2004).

Many studies reveal an age related increase in aberration frequencies. In the present study, a regression analysis with respect to age did not reveal such an increase in chromosome aberrations with and without smoking. This may be due to the fact that the ages of the study group ranged between 21 and 54 while most studies showing age related increase in aberration frequencies included subjects aged 60 and above. Neither did smokers show elevated frequencies compared to nonsmokers with respect to age (p-value = 0.924).

Our study fails to show elevated frequencies of aberrations in control smokers compared to non-smoker controls. It may be noted that only light to moderate smokers were included in this study (<18 cigarettes/day). A higher frequency of micronuclei was observed in subjects that smoked a higher number of cigarettes per day when compared with healthy non-smokers or low level smokers (Fenech, 1993; Tsai *et al.*, 2001). Tawn and Binks (1989) identified a significant effect of heavy smoking (>20 cigarettes/day) but found it difficult to establish a significant effect of moderate or light smoking.

Further, enhanced levels of chromatid aberrations due to radon is attributed to genomic instability (Smerhovsky *et al.*, 2002) and genomic instability correlate well with decreased DNA repair capacity (Bailey and Bedford, 2006). Moreover, reports show that smokers have a reduced capacity to repair DNA damage (Myllyperkio *et al.*, 2000; Duell *et al.*, 2002; Fracasso *et al.*, 2006).

CONCLUSIONS

The present study reveals significantly higher frequency of chromosome aberrations in smoker cells exposed *in vitro* to radon compared to non-smokers. Thus the synergistic effect of smoking and radon is well established.

REFERENCES

- Al-Sabti, K., D.C. Lloyd, A.A. Edwards and P. Stegnar, 1992. A survey of lymphocyte chromosomal damage in Slovenian workers exposed to occupational clastogens. Mutat. Res., 280: 215-223.
- Alavanja, M.C., 2002. Biologic damage resulting from exposure to tobacco smoke and from radon: implication for preventive interventions. Oncogene, 21: 7365-7375.
- Bailey, S.M. and J.S. Bedford, 2006. Studies on chromosome aberration induction: What can they tell us about DNA repair? DNA Repair, 5: 1171-1181.
- Bauchinger, M., E. Schmid, H. Braselmann and U. Kulka, 1994. Chromosome aberrations in peripheral lymphocytes from occupants of houses with elevated indoor radon concentrations. Mutat. Res., 310: 135-142.
- Bilban, M. and C.B. Jakopin, 2005. Incidence of cytogenetic damage in lead-zinc mine workers exposed to radon. Mutagenesis, 20: 187-191.
- Chung, H.W., E.K. Ryu, Y.J. Kim and S.W. Ha, 1996. Chromosome aberrations in workers of nuclear-power plants. Mutat. Res., 350: 307-314.
- Colagar, A.H, G.A. Jorsaraee and E.T. Marzony, 2007. Cigarette smoking and the risk of male infertility. Pak. J. Biol. Sci., 10: 3870-3874.

Res. J. Environ. Toxicol., 6 (2): 51-58, 2012

- Dias, F.L., L.M. Antunes, P.A. Rezende, F.E. Carvalho and C.M. Silva *et al.*, 2007. Cytogenetic analysis in lymphocytes from workers occupationally exposed to low levels of ionizing radiation. Environ. Toxicol. Pharmacol., 23: 228-233.
- Duell, E.J., E.A. Holly, P.M. Bracci, J.K. Wiencke and K.T. Kelsey, 2002. A population-based study of the Arg399Gln polymorphism in X-ray repair cross- complementing group 1 (XRCC1) and risk of pancreatic adenocarcinoma. Cancer Res., 62: 4630-4636.
- Ebisike, K., O.O. Ayejuyo, J.A. Sonibare, O.A. Ogunkunle and T.V. Ojumu, 2004. Pollution impacts of cigarette consumption on indoor air quality in Nigeria. J. Applied Sci., 4: 623-629.
- Eichholzer, M., 2000. Nutrition and cancer. Ther Umsch., 57: 146-151.
- Fenech, M., 1993. The cytokinesis-block micronucleus technique: A detailed description of the method and its application to genotoxicity studies in human populations. Mut. Res., 285: 35-44.
- Fracasso, M.E., D. Doria, P. Franceschetti, L. Perbellini and L. Romeo *et al.*, 2006. DNA damage and repair capacity by comet assay in lymphocytes of white-collar active smokers and passive smokers (non- and ex-smokers) at workplace. Toxicol. Lett., 167: 131-141.
- Gaso, M.I., N. Segovia, S. Pulinets, A. Leyva, G. Ponciano and P. Pena, 2005. Indoor radon and annual effective doses at a high altitude region in central Mexico. J. Applied Sci., 5: 1356-1362.
- Hagmar, L., S. Bonassi, U. Stromberg, A. Brogger, L.E. Knudsen, H. Norppa and C. Reuterwall, 1998. Chromosomal aberrations in lymphocytes predict human cancer: A report from the European Study Group on Cytogenetic Biomarkers and Health (ESCH). Cancer Res., 58: 4117-4121.
- Hamza, V.Z. and M.N. Mohankumar, 2009. Cytogenetic damage in human blood lymphocytes exposed *in vitro* to radon. Mutat. Res., 661: 1-9.
- Hamza, V.Z., P.R.V. Kumar, R.K. Jeevanram, R. Santanam, B. Danalaksmi and M.N. Mohankumar, 2008. A simple method to irradiate blood cells *in vitro* with radon gas. Radiat. Prot. Dosimetry, 130: 343-350.
- Hoffmann, D., K.D. Brunnemann, J.D. Adams, A. Rivenson and S.S. Hecht, 1982. N-Nitrosamines in Tobacco Carcinogenesis. In: Nitrosamines and Human Cancer (Banbury Report No. (12), Magee, P.N. (Ed.). Cold Spring Harbor Laboratory, Cold Spring Harbor, pp: 211-225.
- Huberman, E., L. Sachs, S.K. Yang and V. Gelboin, 1976. Identification of mutagenic metabolites of benzo(a)pyrene in mammalian cells. Proc. Natl. Acad. Sci. USA, 73: 607-611.
- Kandar, M.Z. and I.B. Bahari, 1995. Radiation-induced chromosomal aberrations among TENORM workers: Amang and ilmenite-processing workers of Malaysia. Mutat. Res., 351: 157-161.
- Khater, A.E.M., 2004. Polonium-210 budget in cigarettes. J. Environ. Radioactivity, 71: 33-41.
- Lee, M.E., E. Lichtenstein, J.A. Andrews, R.E. Glasgow, S.E. Hampson, 1999. Radon-smoking synergy: A population-based behavioral risk reduction approach. Preventive Med., 29: 222-227.
- Leggett, R.W. and K.F. Eckerman, 2001. A systemic biokinetic model for polonium. Sci. Total Environ., 275: 109-125.
- Lehnert, B.E. and E.H. Goodwin, 1997. A new mechanism for DNA alterations induced by alpha particles such as those emitted by radon and radon progeny. Environ. Health Perspec., 105: 1095-1101.
- Littlefield, L.G. and E.E. Joiner, 1986. Analysis of chromosome aberrations in lymphocytes of long-term heavy smokers. Mutat Res., 170: 145-150.
- Mai, H., 2007. Polonium 210. Exposed J. Med. Toxicol., 3: 82-84.
- Martin, F., R. Earl and E.J. Tawn, 1991. A Cytogenetic study of men occupationally exposed to uranium. Br. J. Ind. Med., 48: 98-102.

- Myllyperkio, M.H., T.R. Koski, L.M. Vilpo, J.A. Vilpo, 2000. Kinetics of excision repair of UV-induced DNA damage, measured using the comet assay. Mutat. Res., 448: 1-9.
- Naddaf, A., 2007. The social factors implicated in cigarette smoking in a Jordanian community. Pak. J. Biol. Sci., 10: 741-744.
- Obe, G. and J. Herha, 1978. Chromosomal aberrations in heavy smokers. Hum. Genet., 41: 259-263.
- Prabhavathi, P.A., S.K. Fatima, M.S. Raoand P.P. Reddy, 2000. Analysis of chromosomal aberration frequencies in the peripheral blood lymphocytes of smokers exposed to uranyl compounds. Mutat. Res., 466: 37-41.
- Prabhavathi, P.A., S.K. Fatima, P. Padmavathi, C.K. Kumari and P.P. Reddy, 1995. Sister-chromatid exchanges in nuclear fuel workers. Mutat. Res., 3474:: 31-35.
- Preston-Martin, S. and P. Correa, 1989. Epidemiological evidence for the role of nitroso compounds in human cancer. Cancer Surv., 8: 459-473.
- Rupa, D.S., P. Rita, P.P Reddy and O.S. Reddi, 1988. Screening of chromosomal aberrations and sister chromatid exchanges in peripheral lymphocytes of vegetable garden workers. Hum. Exp. Toxicol., 7: 333-336.
- Rupa, D.S., P.P. Reddy and O.S. Reddi, 1989. Analysis of sister-chromatid exchanges, cell kinetics and mitotic index in lymphocytes of smoking pesticide sprayers. Mutat. Res., 223: 253-258.
- Salameh, B., O. Abu-Haija, A.W. Ajlouni and M. Abdelsalam, 2011. Radiation doses due to indoor radon concentration in Tafila district, Jordan. Res. J. Environ. Toxicol., 5: 71-75.
- Sinues, B., M. Izquierdo and J.P. Viguera, 1990. Chromosome aberrations and urinary thioethers in smokers. Mutat. Res., 240: 289-293.
- Skwarzec, B., J. Ulatowski, D.I. Struminska, A. Borylo, 2001. Inhalation of ²¹⁰Po and ²¹⁰Pb from cigarette smoking in Poland. Environ. Radioactivity, 57: 221-230.
- Smerhovsky, Z., K. Landa, P. Rossner, D. Juzova and M. Brabec *et al.*, 2002. Increased risk of cancer in radon-exposed miners with elevated frequency of chromosomal aberrations. Mutat. Res., 514: 165-176.
- Sorsa, M., K. Falck, J. Maki-Paakkanen and H. Vainio, 1983. Genotoxic hazards in the rubber industry. Scand. J. Work. Environ. Health, 9: 103-107.
- Tahir, S.N, A.S Alaamer, 2008. PB-210 concentrations in cigarettes tobaccos and radiation doses to the smokers. Radiat. Prot. Dosim., 130: 389-391.
- Talaeepour, M., F. Moattar, F. Atabi, S.B. Azad and A.R. Talaeepour, 2006. Investigation on radon concentration in the Tehran subway stations, in regard with environmental effects. J. Applied Sci., 6: 1617-1620.
- Tawn, E.J. and C.A. Whitehouse, 2003. Stable chromosome aberration frequencies in men occupationally exposed to radiation. J. Radiol. Prot., 23: 269-278.
- Tawn, E.J. and K. Binks, 1989. A cytogenetic study of radiation workers: The influence of dose accumulation patterns and smoking. Radiat. Prot. Dosim., 28: 173-180.
- Tomida, S., Y. Yatabe, K. Yanagisawa, T. Mitsudomi and T. Takahashi, 2005. Throwing new light on lung cancer pathogenesis: Updates on three recent topics. Cancer Sci., 96: 63-68.
- Tsai, M.H., J.S. Hwang, K.C. Chen, Y.P. Lin, W.A. Hsieh and W.P. Chang, 2001. Dynamics of changes in micronucleus frequencies in subjects post cessation of chronic low-dose radiation exposure. Mutagenesis, 16: 251-255.

Res. J. Environ. Toxicol., 6 (2): 51-58, 2012

- Vijayalaxmi and H.J. Evans, 1982. *In vivo* and in vitro effects of cigarette smoke on chromosomal damage and sister-chromatid exchange in human peripheral blood lymphocytes. Mutat. Res., 92: 321-332.
- Zafar, I., K.N. Mohammad, M. Nisar, M. Rashida, Assadullah, B. Shumaila and S.A. Mohammad, 2003. Effect of cigarette smoking on erythrocytes, leukocytes and haemoglobin. J. Medical Sci., 3: 245-250.
- Zaire, R., C.S. Griffin, P.J. Simpson, D.G. Papworth, J.R. Savage, S. Armstrong and M.A. Hulten, 1996. Analysis of lymphocytes from uranium mineworkers in Namibia for chromosomal damage using Fluorescence In Situ Hybridization (FISH). Mutat. Res., 371: 109-113.