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ABSTRACT

The present study focuses on the numerical investigations of stability margin for long, slender
and relatively flexible unguided launch vehicles while avoiding the aercelastic divergence
conditions. The aerodynamic loads of the complete configuration are computed by using the
modified three-dimensional low order panel method. The feasibility of using the transfer matrix
method to estimate the natural frequencies and mode shapes for the launch vehicle 1s explored
theoretically. Based on the vibration characteristics, the total dynamic response of the system has
been evaluated when a sharp edged gust i1s encountered during the flight. The static aercelastic
characteristics, the divergence speed of a given launch vehicle have been studied by variation of
the initial angle-of-attack and dynamie pressure. Computational analysis and discussion along with
pertinent conclusions are presented.

Key words: Aerocelastic divergence, dynamic analysis, Transfer Matrix Method (TMM), panel
method

INTRODUCTION

Aercelasticity is concerned with problems in which there is substantial interaction among the
aerodynamic, inertial and structural forces of an object. When a body moves through the
atmosphere, or when a body is placed in a wind tunnel, aerodynamic forces act over its surface. If
the body 1s deformed, there is a change in the magnitude and distribution of these surface forces.
This redistribution causes additional deformations; the result is an interactive feedback loop
between aerodynamic loads and aircraft deflections (Bisplinghoff et al., 1996; Heeg, 2000). The
speed of a launch vehicle above which no statically stable equilibrium condition exists and the
deformation will increase up to a structural failure is called the divergence speed (Dowell et al.,
1996). The phenomenon of aeroelastic divergence is recognized to be of primary importance in the
design of high performance, highly flexible launch vehicles. It 1s characterized by an unstable flight
condition arising from the adverse interaction of aerodynamic forces and elastic deformation of the
vehicle structure (Hodges and Pierce, 2002). Knowledge of the aeroelastic divergence characteristics
of launch vehicles is essential to their design, since divergence is a function of the structural
stiffness, mass distribution, distributed aerodynamic characteristics and engine thrust
(Dowell et al., 2003). Also, it is important to realize that conventional structural-design
considerations are influenced primarily by the strength of the structure, whereas aercelastic design
focuses on the rigidity, aerodynamic shape, dynamic behavior and damping characteristics of the
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structure. Failure to consider asroelastic effects could very well lead to the destruction of the vehicle
{(Vernon and Harper, 1966; Clarence, 1967, 1968; Walters and Rister, 1971; Librescu et al., 2002),

The evaluation of aercelastic divergence characteristics 1s an important function 1in
qualifying the aerodynamic and structural compatibility of a new launch vehicle configuration.
Aeroelastic divergence theory specifically oriented to slender bodies 1s particularly necessary by
virtue of the high performance of present. day space launch vehicles (Capri ef al., 2006; Trikha and
Pandiyan, 2008),

Among the tools routinely used in the aireraft/launch vehicles industry to analyze potential flow
over complete launch vehicle configurations are the programs based on panel methods. These
methods are, in principle, capable of analyzing almost entirely arbitrary configurations, within the
limitations of potential flow computations. Also, panel methods have the distinct advantage over
alternative field discretization techniques (finite difference, finite volume, ete.) in the fact that the
unknowns are situated only on the surface of the configuration and not throughout the external
space like the solution of the full Navier-Stokes equations which require discretization of the
whole fluid doemain (Wileox, 2008). It is this quality of panel methods that makes them very
attractive for routine use and also amenable for use on medium or even small computing facilities
{(Woodward, 1973, 1980).

The Transfer Matrix Method (TMM) has been developed for a long time and has been used
widely in structure mechanies and rotor dvnamics of linear time invariant system. Transfer matrices
have been applied to a wide variety of engineering programs by a number of researchers. Holzer
initially applied TMM to solve the problems of torsion vibrations of rods (Holzer, 1921). Myklestad
{1945) applied TMM to determine the bending-torsion modes of beams, Thomson (1950) applied
TMM to more general vibration problems and Pestel and Leckie (1963) listed transfer matrices for
elastomechanical elements up to 12th-order. Many researchers, such as, Chga and Shigematus
(1987), Xue (1994), Loewy et al. (1985) and Loewy and Bhntani (1999) studied and improved the
finite element transfer matrix for structure dynamics. Up to the present, Rui and Lu (1995) and
Rui et al. (1993) developed TMM of Multibody System (MS-TMM) for vibrations analysis of linear
multibody system by developing new transfer matrices and orthogonal property of multibody
system.

The evaluation of the launch-vehicle design in view of its aeroelastic divergence characteristics
requires a theoretical analysis which must be adequate for predicting this divergence behavior.,
Since, most launch vehicles are designed to perform orbital, probe and reentry missions, the
dynamic conditions imposed on the vehicle are normally very stringent and require a high degree
of sophistication in the aeroelastic divergence analysis.

In the present study, a theoretical method for analyzing the aeroelastic divergence behavior
of unguided, slender-body, launch vehicles is presented. This accomplished by three steps. Firstly,
a modified three dimensional low order panel method has been used to estimate the aerodynamic
leads of the complete configuration; secondly, the launch vehicle vibration characteristics
{linear eigenvalues and linear eigenvectors) are investigated using TMM; thirdly, a principle of

superposition is utilized in finding the total dynamie response of the system.

MATERIALS AND METHODS
Theory: The major assumptions were considered in the derivations of the equations of motion are
{(Vernon and Harper, 1966):
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*  Beam theory: It is assumed that elastic deformations of the vehicle body are described by
elementary bending theory of beams. The usual assumptions of small deflections are utilized.
All effects due to axial loads are considered to be negligible

¢ Structural representation: The vehicle body structural characteristics are simulated by a
lumped mass-spring system

¢ Panel aerodynamic: The solution requires linear aerodynamic coefficients and also the
assumption of small angles of attack is made (less than 10 degrees) within the limitation of
potential flow

* Two-dimensional analysis: The wvehicle i1s considered as non-spinning and only lateral
displacements and pitching rotations are considered

+« Steady-state analysis: The analysis 1s applicable only for a specific time in the vehicle flight
where structural characteristics and aerodynamics are constant

¢ External forces: The external forces are averaged over an integration time interval and
assumed constant during a time interval

Computational aerodynamic analysis: Panel methods have been demonstrated over the past
thirty years or more to be a most useful tool for computation of fluid flows, in different industrial
applications as well as in research. Even though these methods are based on the formulation of the
potential flow, many problems involving real viscous flows around sclid bodies can be dealt with
too close approximation with them. Hence, the wide acceptance of panel methods is found over
years. Furthermore, it 1s important that panel methods can produce a solution of the flow with only
discretization of the solid surface, compared with more exact approaches like the solution of full
Navier-Stokes equations which require discretization of the whole fluid domain.

The problem of calculating the surface pressures, forces and moments acting on an arbitrary
wing-body-tail combination is solved (after the configuration 1s subdivided into a large number of
planar panels) by representing it in a system of sources, doublets and vortex singularities. The
effects of the body volume, the incidence and the camber are simulated by hne sources and doublets
distributed along the body axis; the effects of the wing thickness are represented by planar source
distributions; and wing camber, twist and incidence effects by planar vortex distributions. The
interference effect of the wing on the body 1s provided by additional vortex distributions located on
the body surface. The strengths of these singularities are determined by satisfying the condition
of the tangential flow at panel control points for given Mach number and angle-of-attack
{(Woodward, 1973, 1980; Abbas et al., 2008; Abbas and Chen, 2007).

For small perturbations, the governing equation of the potential flow can be simplified greatly.
Thus, the sclution of many problems becomes possible. The linearized three-dimensional potential
equation for steady state flow is (Morine and Lue, 1974):

B, + ®,, +¢, =0 (1)

where, ¢ is the velocity potential and p* is the compressibility parameter and depends upon Mach
number Ma, except for the case of the transcnie flow, Eq. 1 is valid for subsonic (2 = 1-Ma® and
(p? = Ma®-1) supersonic flows. The solution of the potential flow is used to predict the pressure
distribution on the configuration. The pressure coefficient can be calculated using the exact
isentropic formula at the control point 1 of a panel:
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2 {{HHMaz(l—pf)T —1} (2)

5 vMa? 2

where, v is the ratio of specific heat, for ideal gas (air) = 1.4, p'=w/+v{+ W/ is the resultant velocity
and u,, v, and w; are components of the velocity at panel 1 in x, y and z coordinates. The velocity

components in terms of the perturbation velocity potential are:
w=U, +80/dx , v=>00/dy , w=2ap/dz (3)

where, U 1s the stream velocity. To compute the surface pressures, normal force and pitching
moment coefficients Cy; and C,; acting on an arbitrary launch vehicle model, the same mathematical
modeling of Abbas and Chen (2007) has been implemented.

Formulation of transfer matrix relation and vibration characteristies: A structure or a
beam can be divided into segments. A typical segment of a beam consists of a massless span and
point mass. The flexural property of the segment is described by the field transfer matrix of the
span; the internal effect of the segment is described by the point transfer matrix of the mass. The
state variables considered are Y, ¢, M, and V_ where Y, is the lateral deflection, ¢ is the slope, M,
is the structural moment and V, is the structural shear. The corresponding state vector {Z,,..}; at
station-j 1s (Francis ef al., 1978).

Zwhi=[V & M, V.J (4a)

The overall beam transfer equation and transfer matrix U, which relates the state vectors at

ends of the beam, can be assembled and calculated. That is,

{Zsme}j = U{Zsme}u (4b)
U=UU_ UU, (4c)

il

And the transfer matrix of the segment-j is (Francis et al., 1978).

1 L z Bt
2EI BEL
L 12
vol 0t g = (4d)
"o —el, 1-@LL —LtolZ
551 1
2 2 3 1? 3. I3
—o'm —e'mL —eo'm . 1+e'm_

where, mis the lumped mass, L. is the length between lumped masses, Kl 1s the product of modulus
of elasticity and bending moment of inertia (flexural rigidity), I, is the rotary inertia about a
diameter and w is the natural frequency. The vibrational characteristics corresponding to the
different boundary conditions can be obtained. For the problem under consideration, both edges
of beam are free, 1.e., Y, and ¢ are unknown and non-zero. Substituting these boundary conditions
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into Kq. 4b, the eigenvalue equations (frequency equations) can be derived. It 1s required that the
determinant after eliminating the boundary conditions should be equal to zero. Henee, the natural
frequencies of the system are determined, as shown below:

Alw) =0 (5)

The procedure for natural frequency w calculation 1s to assume a frequency as in Holzer
method and proceed with the computation (Francis et al., 1978). Once  is determined, the state
vectors (normal modes) (Z,,,), can be calculated for each frequency (Rui ef al., 2008).

System dynamic response analysis: The principle of superposition 1s utilized in finding the total
dynamie response of the system. The structural system is hnear and a set of external forces applied
to the structure will independently excite a response in each normal modes of vibration. The total
system dynamic response is then found by the summation of the contributions of each mode.
Following the mathematical modeling which defined in Vernon and Harper (1966) and Walters and
Rister (1971), the lateral displacement X. and x, velocity for r degrees of freedom system at mass
point j are:

=

X, =2.[(A, ~D,)eoset+ B, sino t+D, | X,
o (6a)
i k=t
X, =2, @, [-(A, - D, )sine,t+B, coset ] X,
k=1
Where:
j=t =t j=t
A=Y% mX, ., B=Yx mX, /o, , D,=YFX,/e] (Bb)
1

where, subscript k denotes each mode and F is the aerodynamic loads which are the normal force
N and pitching moment M. These aerodynamic loads are calculated using the local coefficient as
follows:

N=AxaxC, » M=AxaxC, (Be)

where, A = q.xA_; is the product of dynamic pressure q, and the reference area of the launch
vehicle A_ and ot is the angle of attack. The initial conditions will be designated for time t,. Time
t will be defined as t =t,+At where, At will be sufficiently small to permit essentially small change
in the values required for the integration problem. X, is the normalized value of the modal
eigenvector at mass point for mode j for mode k:

o yz
X, = Zo)s / [;m,(zm)@] (6d)

Aeroelastic divergence analysis: The launch vehicle divergence has been studied by the
variation of the initial conditions and the effective dynamic pressure. The model is subjected to

5
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different. values of 1mitial disturbance (initial condition) such as a wind gust, which creates a
certain, all other conditions are constant. The effective dynamic pressure is a divergence parameter
and was changed by using different values for A. Aercelastic divergence selected method does not,
{(Walters and Rister, 1971). Two values
used for determining the launch vehicle divergence parameter which are the slope for the nose

directly yield a single value for divergence parameter A,
section and the slope for the tail section of the model versus time functions. Generally speaking,
these two slopes represent the extreme values of slope for the vehicle with slopes for all intermediate
vehicle sections between these two extreme values. The effective value of the model slope is
assumed to be an average of these extreme values, at the times selected for comparison. The launch
vehicle stability is determined as a function of the change in average model slopes versus time.

RESULTS AND DISCUSSION

The unguided launch vehicle selected for a sample problem is a typical model with aercelastic
divergence tendencies. The length to diameter ratic is approximately 23. The model has been
divided into 10 lumped elements with each having 2 degrees of freedom, translation and rotation.
The structural properties representation of the model is shown in Fig. 1a-c.

The natural frequencies eigenvalues and the corresponding mode shapes eigenvectors were
calculated by use of TMM as outlined earlier. The free-free beam representation of a launch vehicle
in flight 1s a semi-definite system, which has the first two frequencies equal to zero due to rigid
body mode. The eigenvectors of these zero frequencies must be calculated independently. The first
zero mode eigenvector 1s a simple unit translation of all elements with all rotational displacements
equal to zero while the second mode eigenvector is a rotation of the rigid body about its center of
gravity. The natural frequencies and its mode shapes are shown in Fig. 2a-1.

The meodified computer program (wing-body-tail) of the three-dimensional low-order panel
method (Abbas and Chen, 2007) has been used to validate the computations of the aerodynamic
parameters (lift. and pitching moment coefficients) along the length of the selected model with the
data in reference (Walters and Rister, 1971) which they used an empirical method for determining
the distributed aerodynamic loads on axisymmetric launch vehicle. The model surface has been
divided into a suitable number of panels as shown in Fig. 3. The results show a good agreement
with approximate 1.15% error. These verification results are shown in Fig. 4.

Different initial wind gust conditions were investigated for their influence on the stability of
the launch vehicle and comparative calculations were made with o« = 1°, 2° and 5° all other
conditions are constant. The dynamic response 1s calculated as a function of time t = 0—0.018 sec

Fig. 1:

Selected model-structural properties along the launch vehicle length (a) Lumped masses (b)

QTR RTRTRINTNINTNIN
L (m)

ATV RTRTRINTNAATNEN
L (m)

Rotary inertia (c) Flexural rigidity

307 (a) 0.057 (b) %i— (©)

2.0
7 004 k!
201 o E 167
e $ 0.031 g 141
ED . i ]___
=2 £ 0.021 < 10
g 10 & T 0.8
= 0.67
0.014 0.4
0.21

B 0.00F——"—T—r—rT""h 0.0F T

Q’Lb“c%ﬁf\,b‘b% QN MX OB O V. % 6% Q Vb%%’bvb%

NN NN
L (m)



Space Res. J., 4 (1): 1-11, 2011

1.0 1.0q 1.0
(a) (b) (O]

OG f\l T T T T T T 1 OO T T T T T T T T 1 0.0 T T T T T T T 1
N TR TG R I QX a® P WANVAF AP o @ NG PN F OGP

1.0- -1.0- 1.0-

109\ () 10 (o) 101

0.0Q T T T T T (I‘ T T 1 O.OQ T—T T T |Q ——1TT 1 OOQ Wl/'\ T IQ /l-l\ 1
C AR IGR TR TR R RER R RN AR RA N X

1.0- 1.0- -1.04

1.0 (2 1.0+ (b 107 (i)

OvCQ T /I\I\K IQ t'l\ M 1 OOQ .’\' T T /I\Q'\'fl(‘ T T O'OE "v Q —
SIVAR A TR RO BT ATOA RS /Q RETRNARE

1.0 -1.0- -1.0-

Fig. 2. Selected model-nine natural frequencies and its mode shapes along the launch vehicle
length, (a) ©, =0rad sec™ (b) w, =0 rad sec™ {(c) w, = 462.9 rad sec™" (d) w, = 1283rad sec™"
(e) W, = 2042 rad sec ! (f) w; = 3370 rad sec! (g) w, = 4278 rad sec ! (h) w, = 5830 rad sec™!
(1) w, = 6549 rad sec™’

Fig. 3: Selected model-panel discretization

with time interval At = 0.001 sec. Figure 5a-c show the launch vehicle deflection versus time curves.
The behaviors of the response curves were essentially identical with the response magnitude being
direct function of the initial conditions. At t = 0.015 see, the values of the nose and tail section slopes
are less than the starting conditions, hence average launch vehicle slope has been decreased and
the vehicle is stable. It can be concluded that those initial conditions of gust strength as related to
o will not affect on the stability of the launch vehicle for a specific A.

Figure 6a highlights the effect played by the variation of A for constant value of ¢ = 5°. As it
can be seen, at A = 8000 and 8500 N, the launch vehicle averaged slope crossed the starting value
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Table 1: Divergence dynamic pressure (¢ = 5% t = 0.015 sec)

AN o Tad o rad Barerege Tad tbinia TA Ad rad State
8000 0.0830 0.0801 0.0816 0.0873 -0.0057 Stable
8500 0.0870 0.0823 0.0846 0.0873 -0.0027 Stable
9000 0.0918 0.0847 0.0883 0.0873 0.001 Unstable
hop, #8500+ 90927 (9000 8500)~8865 N, 2, = 0008000 1 14p

0.0037 8000

at t = 0.015 sec (Fig. 6b). This implies that the launch vehicle is stable. Increasing A to a value
9000 N, the averages launch vehicle slope has increased after a certain period of time which reveals
that the vehicle is unstable or aercelastically divergent. Table 1 shows the summary of the results
of Fig. 6b. The stability margin based on dynamic pressure then is approximately A,, = 11%. For
rigid bodies, the dynamic pressure ratio (/A )<0.5 is suggested (Vernon and Harper, 1966;
Clarence, 1987, 1968, Walters and Rister, 1971), static margin greater than 1 diameter is
recommended. Depending on the confidence in the accuracy of the structural representation of the
launch vehicle and the computations of the aerodynamic loads, it is reasonable to assume that this
ratio could be closer to 1.0 for relatively elastic bodies.

CONCLUSION

Depending on the flight condition requirements during sharp edged gust wind of the unguided
launch vehicle selected model and with the assistance of the three-dimensional low-order panel
method program for aesrodynamic computations; transfer matrix method for natural frequencies
and mode shapes for vibration computations, aercelastic divergence parameter is numerically
investigated based on the principle of superposition in finding the total dynamic response of the
system. A panel method has the advantage of reducing the dimension of the problem. Therefore,
it has important application to the early stages of a design when the geometry of the body can
change frequently in the process of optimization and the rapid response time is essential. It has
been shown that variation of the initial conditions of gust strength as related to the angle-of-attack
will not affect on the stability of the launch vehicle. Depending on the confidence in the accuracy
of the structural representation of the launch vehicle and the computations of the aerodynamic
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loads, it is reasonable to assume that the ratio of (A/4,) could be closer to 1.0 for relatively elastic
bodies. Based upon results of this investigation, the theoretical method presented appears to be
adequate for predicting aercelastic divergence and for evaluating the design of any kind of
unguided, single or multiple stages, relatively flexible launch vehicles in view of their aercelastic
divergence characteristics. It is desirable to employ the formulations of discrete time of transfer
matrix method (DT-TMM) as a direction of future research.
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