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ABSTRACT

Space trusses have become widely popular, particularly in large areas such as sport center,
exhibition halls and airport hangars. Base on their high degree of indeterminacy and great
stiffness, the seismic designs of space trusses are neglected. Despite the earlier assumption, recent
studies show that in the area which, the strong earthquakes are probable; these structures are
vulnerable to seismic failures. As dynamic behavior of the structures is a function of the mass and
stiffness matrixes, so in this study, the effects of structural geometry on the natural period of
vibration which is depended to these two matrixes, are studied. The results show that the natural
period of wibration and dynamic behavior of the double layer lattice domes depended on the
geometry of these structures, especially on the span and finally, the natural peried of vibration of
the double layer lattice domes can be estimated by using this mentioned geometric parameter.
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INTRODUCTION

Space trusses are one of the lightest steel structures with three-dimensional and complex
structural behaviours made of thousands of steel tubular bars joined together by different kind of
connector such as MERO-type (Ghasemi et af., 2010). The very high degree of indeterminacy, their
multiple redundancies and their appropriate three-dimensional geometrical form provide additional
margins of safety to prevent them from the sudden collapse in the case of accidental local failure
of one or more elements, when the overall loading is below the service load.

They have become widely popular as large span roof structures, particularly in areas such as
sport. centres, exhibition halls and airport hangars. The main advantages of these structures are
that they are light in weight, have a high degree of indeterminacy and great stiffness, simple
production and fast assembly, are totally prefabricated, do not need site welding, are easily formed
into various attractive geometrical surfaces, have the ability to cover large areas with widely spaced
column supports, have generally good response against earthquakes and are cost effective.

Study on the seismic behaviours is one of the interesting topic that is mentioned by most of the
structural engineers {(Adedeji and Ige, 2011; Sasan and Mohammadsadegh, 2011). With their low
weight and great stiffness, space trusses are believed to attract low forces during seismic activities
and can be considered to be amongst the least likely to suffer damage, when compared to other
large span reofs (Marsh, 2000). Despite the earlier assumptions, recent studies show that in the
area which, the strong earthquakes are probable; these structures are vulnerable to seismic
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faillures, especially when roofs are covered with snow. Kawaguchi (1997) reported damages due to
earthquake activities. Rezaiee-Pajand el al. (2011) presented a new method to calculate the
viscous fictitious damping for dynamic relaxation on some structures such as space truss.
Koohestani and Kaveh (2010) used a new method for vibration analysis of single and double layer
shallow dome. Cai el al. (2008) studied on the seismic performance of space beam string structure.
Coan and Plaut (1983) determined the dynamic response of lattice dome. Jamshidi et «l. (2011)
studied on dynamic behaviour of deuble layer cylindrical space truss. Sadeghi (2004) investigated
the dynamic behavior of double layer barrel vaults; and showed that they are vulnerable to
earthqualkes and have a brittle behavior. Zhang and Lan (2000) have reviewed research findings
on dynamic characteristics of space trusses. Further studies on seismic behavior of space structures
are conduced by Ishikawa et al. (2000). The above study showed the importance of seismic
evaluation of space trusses.

Equivalent static loading and dynamic analysis are the most common methods that used in the
seismic analysis of civil engineering structures (Alsulayfani and Saaed, 2009). For the critical
structure such as space truss, metro tunnel and some other structures, time history analysis which
is a kind of dynamic analysis will be commonly used (Bagherzadeh and Ferdowsi, 2009), But it is
noticeable that time history analysis is time consuming, so some of the researchers presented
computer aid (El-Kafrawy and Bagchi, 2007) or try to use some new mathematical method such
as wavelet method to mitigate its required time (Nadhim, 2006).

It also must regarded that dynamic analysis of a space truss is, in some manner, a cumbersome
procedure due to extreme complexity of structural configuration and numerous degree of freedoms,
as well as a node to node distribution of mass which would consequently results in a complicated
dynamic response. So some engineers refuse to perform the dynamic analysis of space truss in their
designs. avoiding of seismic evaluation of the special structure in horizontal or vertical direction
{Nezamabadi et al., 2008) based on the lacking of an appropriate seismie provision during their
design or construction enhanced the probability of retrofitting in their service time which may need
to spending too much money and complex analysis (Amir et al., 2008). The main aim of this study
is to simplify the dynamic study of this type of structures. Twenty four Double Layer Lattice Domes
(DLLDs) are modelled and their dynamic behaviors are studied and the effect of structural
geometry on their dynamic response is investigated.

REVIEW ON DYNAMIC STUDY

First natural period of vibration as a dynamic characteristic: The free vibration dynamic
equilibrium equation for a space frame with the Multi-degree of Freedom (MDF) which, their
viscous damping is neglected, is presented by Eq. 1:

][ w(t) ]+ [K][v(t) =0 (1)

where, [M] and [K] are the structural mass and stiffness matrixes, respectively.[v] and [v(t)] are
the acceleration and displacement vectors of structures. Equation 2 is assumed to calculate the
natural jth mode shape of the free vibration with frequency ‘w;"

v, (t)=¢, sin{cwt — o) (2)
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and 1n a vector form:

[v]-[o]sin(et—o) (3)

with replacing Eq. 3 into Eq. 1:
{M][p](-o* )+ [K] ]} sin (et - o)=0 (4)
[[K]-¢* [M][e] =0 (5)

This equation is called "characteristic or frequency equation” that used for a MDF system with
‘N" as the number of freedom. Calculation of natural mode shapes of a Multi Degree Freedom
structure is turned to finding the eigenvalues of Eq. 5. As soon as o, (j=1 to N) are calculated, the
natural peried of the vibration can be obtained by using of Eq. 6:

T2 (6)

As it is shown, in each mode, the natural period of vibration is depended on the mass and
stiffness matrixes. On the other hand, the dynamic behavior of the structure is a function of these
matrixes too (Kq. 1). So in this study, the natural period of vibration is chosen as a dynamic
characteristic of space frames. A comprehensive study on the effect of structural configuration and

geometry on main vibration mode is carried.

Effect of damping on the natural period of vibration: The free vibration dynamic equilibrium

equation for Single-degree of Freedom (SDF) with viscous damping is shown by Eq. 7 and 8.

mu+cu+ku=0 (7)
u+ i1’1+£u:0 (8)
m m

where, m and k are the structural mass and stiffness, respectively. And ‘¢’ i1s a damping factor that
represented the energy dissipation in a cycle of amplitude or a perioed of forced harmonic vibration.
If we consider:

on” =

2|

2&m, _—
n
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Then the Eq. 8 will be:
T+ 28m, i1+ on’u=0 (9)

where, £ 1s called, damping ratio and it's depend to mass and stiffness of the system. In most
mention structure such as buildings, bridges, dams,... £ is less than 0.1. By solving Eq. 9 for the
system with £<1, displacement function will be arrived as Eq. 10

u(t)=e =" *[u (O)COSOJDIJr{WM(O)J]SiHI:(%)] (10)
g

where, 0, is equal to the 1 that shows ‘the natural frequency for the system with damping

factor’ (wp) is related to ‘the natural frequency for the system without damping’ (w,). Moreover,

damping detracted natural frequency from w_ to the w, and increased pericd from T, to the T but

for the system with £<20%, it's effect on the w and T is neglected (Chopra, 1995). As the damping

ratio for the common structure are located in this range, so w, and T are approximately equal to
the w and T .

Calculation the mass and stiffness matrix for the space trusses (Weaver and Johnston,
1987): An element of a truss that is hinged in the joint j and k is shown in the Fig. 1. In this study,
the connections are considered in the ideal manner so the rotations in the each ends of the element
are neglected. The two main flexural surfaces are defined by the surfaces that are built from y' and
Z with ¥' (local axis). In each ends, the translation in the direction %, y' and z' are shown with three
numbered arrow. The stiffness matrix (6x6) for the prismatic element in the local direction 1s
represented by the following matrix:

1
0 0 sym
kl_k}jk,'q. _EA[0 0 0
Tl L |-
KLkl L |-1 001
0O 0 0 0 0
|0 00 0 0]
y Pa y

- | k |
- i |
® Vi ® Il Vi
|
I .
z j | j I X
z | 7
J'// it Lo
le._ T z ka
z
(I) direction (IT) General direction

Fig. 1: An element of a truss
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whereas, there 1sn't any stiffness due to connection at the joints in the perpendicular direction to
the truss axis, most of the terms in the k' will be zero. As the same way, for the local axis, the mass

matrix will be shown as follows:

2
0 2 sym
| nal
MIZMJ'J'Mkj _PpAL |0 0 2
M M 6 [1 0 0
0100 2
001 0 0 0]

To form the rotation matrix, third point such as P (in addition of J and K) is used for defining
flexural surfaces. This point is located in x-y' surface but do not lie on the % axis. If possible, this
point must be considered as another joint of the structure that its coordinate are determined. The

sentences of the matrix will be driven by considering the properties of vector multiplication.

(11)

(12)

—el
e |=e xe, |

where, e is a vector in its index direction. For example e |is equal to:

(13)

e | =[cx c, cZ]

L
Vi
c =
YL
cx:ik
L

L:,b«IJk]erjkzJrzjk2 (14)

The same description can be presented for the unite vector e, by using the coordinate of j and

p. If the rotational matrix is used for this three unite vectors, then:

X b4 v z
R=|e,| Ay Ry Ay
e, | Ay Ay Ag
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The R operator with 6*5 1s used to transfer the stiffness matrix into the structural direction:

oy

By using the above operator, the stiffness matrix will be presented in the structural direction

as follow:
- _
CX
c.c c? g
+Cy ¥ Y
K_RTR'B_EA | &S 66 —GC
- - 2 2
L |-~ =-cc, cr, ¢
2 2
—-cc, - -—cc, cc. C
2 2
|—C.C; —€,C ¢ 6c of |

Note that there are alot of parameters that have influence on the stiffness matrix such as how
the structure is connected to the earth or another structure as a support and how the elements are
connected together, but when the stiffness matrix is written, the effects of these parameters are
considered. So, any variation of these parameters made a change in the stiffness matrix and finally
on the natural period of vibration. Consequently, in this study, the stiffness matrix is affected by
the type of connection.

By using of the same method that described for the stiffness matrix, the mass matrix can be
calculated by Eq. 15

(15)

METHOD OF STUDY

In this study, 24 Double Layer Lattice Domes roofs (DLLDs) are modelled. The geometrical
features of these models are given in Table 1. In Table 1, H, 5, I, «, R, are the height, span,
thickness, internal angle and outer radius of the DLLDs, respectively (Fig. 2a,b). All end nodes of
inner layers are hinged to the rigid supports. They have three rotational degrees of freedom, but

Table 1: Geometrical properties of models

Name of models S(m) «(degree) D(m) Ri(m) Hm) Name of models S (m) o (degree) D(m) R;(m) H (m)
M1 10.0 45.0 0.500 7.07 2.07 M13 45.0 45.0 1.500 31.82 9.32
M2 10.0 45.0 1.000 7.07 2.07 M14 45.0 67.5 1.000 24.35 15.03
M3 10.0 67.5 0.750 5.41 3.34 M1b 45.0 67.5 1.500 24.35 15.03
M4 20.0 45.0 0.750 14.14 4.14 M16 45.0 67.5 2.000 24.35 15.03
M5 20.0 67.5 0.500 10.82 5.68 M17 60.0 45.0 1.000 42.43 12.43
M6 20.0 67.5 0.750 10.82 5.68 M18 60.0 45.0 2.000 42.43 12.43
M7 20.0 67.5 1.000 10.82 65.68 M19 60.0 45.0 2.500 42.43 12.43
M8 30.0 45.0 0.500 21.21 6.21 M20 60.0 67.5 1.500 32.47 20.05
M9 30.0 45.0 1.000 21.21 6.21 M21 60.0 67.5 2.250 32.47 20.05
M10 30.0 45.0 2.000 21.21 6.21 M22 75.0 45.0 2.250 53.03 15.53
M11 30.0 67.5 0.750 16.24 10.02 M23 75.0 67.5 2.000 40.59 25.06
M12 30.0 67.5 1.500 16.24 10.02 M24 75.0 67.5 2.250 40.59 25.06
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Fig. 2(a-b): General geometrical properties of models; (a) 3-d view and (b) Elevation

their transitional degrees are restrained. All end nodes that used for the connection of structural
members have three transitional degrees of freedom.

Mechanical properties of material: It has been assumed that the same material 1s used for
construction of all models. Mild steel material, with the Young’s modulus of 200 GPa, Poisson’s ratio
of 0.3 and yield stress of 350 MPa selected for all members in of all models. The material behavior
is proposed to be elastic perfectly plastic. However, in none of the models the nonlinear behavior
is allowed and only linear part of material behavior is contributed in analysis.

Loading condition: One of the most significant loads on space structure 1s the effect of snow load.
In space structures, the ratio of snow to dead load is considerably greater than the one in ordinary
building. In regular buildings, the probability of coincidence of snow and earthquake loads does
not. play a significant role, because the snow leads are usually a negligible fraction of the total
seismic weight. On the contrary, in space frames snow loads can easily reach 2 or 3 times the self-
weight of a space structure. Therefore, even a very small probability of experiencing a strong
seismic event when having heavy snow on the roof can lead to severe consequences such as the
collapse of the roof. Hence, it is essential to consider the combination of snow and earthquakes in
design (Moghaddam, 2000). In the analysis conducted in this paper, the seismic weight is assumed
to be included with the whole gravity weight of structure which in a horizontal projection is
assumed to be 490 Pa plus 30% of live load which 1s considered to be totally due to a snow load of
1370 kPa. Above conditions belongs to a weather zone with extreme cold winters. The effect of the
milder situation in terms of fewer amounts of snow is considered to have negligible effect on the
dynamic behavior of the space frame and is not included in the analysis presented in this paper.

Method of analysis: The mass and stiffness matrixes are calculated for any DLLDs by using of
the equation that presented. To evaluate the effect of each geometrical characteristic on the mass
and stiffness matrix the main parameter that defined the dynamic behavior of each structure- the
natural period of vibration ((TO) are calculated by Eq. 5 and 6. And also and numerical analysis
are fulfilled by finite element software-SAP2000,

RESULTS AND DISCUSSION

For any of DLLDs, the natural period of vibrations are given in Table 2. Comparing the results
from analytical analysis for each DLLDs with numerical analysis that performed by finite element
software SAP2000 shows the accuracy of the calculation-their difference is less than 0.001 sec.
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Tahle 2: Natural period of vibration for each model.

Name of models T, (sec) Name of models T, (sec) Name of models T, (sec) Name of models T, (sec)
M1 0.042 M7 0.119 M13 0.27 M19 0.381
M2 0.05 M8 0.216 Mi4 0.33 Mz0o 0.472
M3 0.055 M9 0.182 Mis 0.335 M21 0.497
M4 0.05 M10 0.143 Mi6 0.323 M22 0.557
M5 0.123 Mi11 0.21 M17 0.44 M23 0.628
M6 0.122 M12 0.205 M18 0.396 M24 0.655

Table 3: Dependence between the main time period and geometrical parameter Correlations
5] o D H R. SxH
Pearson’s correlation 0.98 0.178 0.733 0.948 0.899 0.966

The correlation coefficient is calculated for each selected geometrical parameter to evaluate their
effect on the dynamic behaviour and also the natural period of vibration of the structure. The
correlation is a mathematic coefficient that determines the relation between two parameters. Two
parameters are correlated together when their value change uniformly that means while one of the
parameters is increased or decreased the other one is increased or decreased, too, that their relation
can be defined by an equation. The correlation coefficient will be positive while these two
parameters move in a same direction; otherwise if they moved in the contrary direction, its value
must be negative.

In this paper the Kq. 16 (David 2009) 1s used to calculate the correlation coefficient.

r—= 1 (16)

According to Table 3, dependence between the natural period of wvibration as a main
characteristic of the structure's dynamic behaviour and the span of the structure is more than other
characteristics, although the effect of ‘Span * Rise’ and ‘Rise’ is noticeable. In Table 3, it is also
noticeable that the influence of ¢ on the natural period of vibration 1s not significant but some of
the researchers tried to categorize their model based on the internal angle (Coan and Plaut, 1983).
It seems that the dependence of the dynamic behavior of structure to the internal degree () 1s not,
reasonable and it's better to study the variety of dynamic behavior based on the span.

Proposed an equation to calculate the natural period of vibration for DLLDs: The
regression of Y to X is a direct line which is drawn between the sporadic points that the summation

of the square deviation parallel to Y axis is minimum. If the equation of this line is y = a+bx, then
the value of ‘a’ and b’ can be calculated by the principle of minimum square, as follows:

Zy:Za+bZX=aﬂ+bZX (17

Z){y:ai‘)ﬁ—be2 (18)

where, n is the number of the points. By solving Eq. 17 and 18, simultaneously, the value of ‘a’ and
b’ will be derived.
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Fig. 3: Natural period of vibration's line
Table 4: The value of R square for each statistical model
Model 1 11 111 v
Independent parameter 8x<H=D SxH 3] H
Dependent parameter T, T, T, T,
R square 0.854 0.934 0.961 0.899

The summation of the square regression is a criterion to evaluate the dispersion of the predicted
Y wvalue (derived from the regression line) from the average Y's value. If this value is near to one,
then the trust to the regression line will be increased (Fig. 3).

For arriving to the approximate equation to calculate the natural period of vibration of the
DLLDs, four statistic models are used. The accuracy of each model is evaluated based on ‘R square’.

By considering Table 4, it can find that the maximum ‘R square’ is calculated for the moedel TIT',
S0 it will be better to define T, as a function of S, opposite to the common seismic provision that
assumed the H as a main factor to prediction T,. Based on the caleculated coefficient from Kq. 17 and
18, the following equation is suggested:

T,=0.0009x S 0.062 (19)

CONCLUSION

Many code of practices used height. (H) as one the main geometric parameters that affected the
natural period of vibration of the structures. But, this is not true for DLLDs. This study shows that
the span (S) of DLLDs is the most important geometric feature that should be used in the dynamie
analysis of DLLDs. In addition, this study also found that the classification of DLLDs for dynamic
study should not be on its internal angle, but it 1s recommended to category the DLLDs according
to their span.
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