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ABSTRACT

In this study, Subspace System Identification (SSI) i1s used for power system analysis and
controller design. It is too difficult to apply analytic method for analysis and controller design of an
operating power system, since there are several power system components which can be modeled
by high order differential equations. On the other hand, components parameter may vary during
normal operation of power system. Therefore, there 1s a gap between the real-time behavior and
analytical behavior of power systems. In this study, the difficulties that may arise when using the
analytical studies are investigated using different power system models. Moreover, it 1s suggested
to use SSI algorithms for power systems analysis and controller design. The benefits and drawbacks
of subspace identification methods are studied for different power systems. An Linear Quadratic
Gaussian (LQQ) controller design scheme is also presented based on subspace system identification.
Several comparisons investigated using computer simulations, the results expresses usefulness and
easiness of proposed methods.
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INTRODUCTION

Power system is a complicated system. It is consist of several main parts which can be arranged
as following; generation, transmission, distribution and loads. Each of these parts contains several
complex structures and components (Kouzou ef af., 2010; Samimi and Golkar, 2012). The need for
controlling and providing continucus and secure operation of power system causes many
researchers to devote their investigations to such a large nonlinear system (Radaideh, 2003;
Belhadj et al., 2007; Sabahi et al., 2008). However, there are some documents which still reveal the
need for more effective methods to analysis and monitor the undesirable happenings of power
systems (Al-Odienat, 2006; Zribi and Rifai, 2006; Haidar et al., 2007). In order to get rid of such
problems, the parameters of power system should be identified using online measurements of
signals. In this case, the role of identification methods becomes important. In this study, It is
supposed to use Subspace System Identification (SSI) methods for improving the power system
operation.

Numerous investigators have worked on S51 methods. They used different SSI algorithms for
different applications {(Katayama, 2005; Keyvaani et al., 2010; Jamaali et al., 2011). The first
footsteps of SSI applications in power systems may be seen in Kamwa ef al. (1996). The study
provided low order model of large power system using N48ID algorithm of SSI. Results of the study

483



Trends Applied Sei. Res., 7 (7): 483-493, 2012

express that S5I based model 1s in lower orders, more optimized and more suitable for controller
design in comparison with classical system identification and modeling.

A Heffron-Phillips maodel of synchronous generator was identified by Karrari and Malik (2004)
using subspace identification algorithms and online measurements. According to Scliman ef al.
{2008), the parameters of a Heffron-Fhillips model of a synchronous generator was extracted from
closed loop data using SS1 algorithms. It divides identification problem of a closed loop system to
two open loop identification and then it uses SSI algorithms to identify each open loop transfer
function. Using some mathematical processing of provided transfer function, it provides a transfer
function as generator model. Wu and Malik (2006) discussed a model predictive controller design
for multi-machine power system using SSI algorithms. The design uses a recursive subspace system
identification algorithm in order to provide a MIMO self-tuning adaptive controller; therefore it can
be used for online applications.

Zhou et al. (2006) mentions use of different types of power system signals applicable to 551
algorithms. It uses such signals to provide identification data. Modal analysis of power system was
developed using subspace system 1dentification metheds and provided data. Ghasemi et al. (2006)
also discussed modal analysis and oscillatory stability study of power systems based on S51 methaods.
It provided a voltage stability measure using identified critical modes of power system. Cai ef al.
{(2009) discusses a PSS using stochastic subspace system identification approaches. It also mentions
small signal analysis of power systems.

In this study, draw-backs of classical methods for power system analysis and controller design
are investigated. Moreover, Subspace System Identification is used to extract beneficial properties
of power system for analysis and controller designs. A Linear Quadratic Gaussian (LQG) controller
is designed based on the information provided by subspace system identification methods.

SUBSPACE SYSTEM IDENTIFICATION (SSI) METHODS

The considered system is:

X, = AxButw,
¥ = CxADugtv, (1)

where:

(SRR >

and we®y cRY xR are samples of input, output, state vectors and Vie R wie R are statie,
zero average state noise and output noise vectors. Subspace system identification problem can be
formulated as below:

There are N samples of input vectors u = [uyu; u,.uy,] and output vectors y = [y, ¥, ¥4 ¥ 104l
from a system of order n. Find A, B, C, D, Q, K, S matrices and n for the structure defined in
Eq. 1.

There are two basic subspace system identification algorithm expressed in Table 1. They use
the same measurements, same block Hankel matrices, different types of projections, SVD of
different matrices, the same methoed for extraction of system order and different extended
observability matrices. MOESP does not need to estimate future states of system but IN4SID
provides future state vectors by using a weighting matrix, MOESP uses extended observability
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Table 1: Comparison of two basic 881 algorithms, MOKESP (MIMO output-erraor state space) algorithm and N4S1D (mamerical algorithm
for subspace state space system) algorithm

Step Operation

MOESP algorithm

N48ID algorithm

1 Model

2 Measured data

3 Block Hankel matrices

4 Extra predefined matrices

5 L decomposition

[&] Projection

7 Singular value decomposition (SVD)

8 System order

9 Extended observability matrix

10 Future state estimation

11  Estimation of state space matrixes

% = Ax +Bu +w
Fo'= Cx +Du '+v °

Lo o

u = [u, uy up 4]

¥ = [¥o ¥1 ¥2 ¥l

Ug Wy e Uy
w u, - u
1 H 3
Upy=| . o T e gyl
Upy Uy o Ty
Yo Y1 o ¥ma
¥Yio Y2 o ¥n N
Youu S R
¥ea  ¥x Yieani-2

C=0,(:n_1:n)
A= 011 (:in,-1)1:n)0, (n_+1:kn_,1:n)
Solving a least square problem to

estimate P and D

= Ax +Bu +w
Cz +Du'+v *

Lo a2 3

u = [u, vy g 4]

¥ = [¥o ¥1 ¥z Yl

Up W e Uy
uy u, - u
Ugps = 1 2 N gt
Uy Uy o Uy
Yo N bR
Y ¥ Y2 y,N < gy
¥ea ¥Yx Y2
U =Up,, ¥, =Yy Up=U Y, =,

_ T
Y fy, Wy = Ly Ly W,

LzzUzzwp = [U1 Uz]

n = dim{;)
0, =U, 5T, |10

Xf — T%:&IEVIT = Ran

X = [xk X Ly ]6 =

E i{m{i LR

L

matrix to extract system matrices but N45SID uses future states and through a least square problem

estimates system matrices.

Table 1 expresses the following advantages for subspace system identification algorithms; SSI
Algorithms are the only system identification methods that can easily and extensively be applied
to all MIMO and SISO systems. Estimation of system order is one of the steps of 851 algorithms.
This advantage reduces amount of time, cost and ecalculations. SSI methods can handle big
packages of data. Online operations of SSI methods are easier and can easily be applied to MIMO
systems. SSI methods use robust mathematical tools such as SVD, L@ decomposition, least square
and QR decomposition. They also don’t need nonlinear optimization. Some SSI algorithms only use

output data to identify a model. This is a considerable advantage.

Sinee, the algorithms expressed in Table 1 use exogenous inputs, they are called deterministic
subspace identification algorithms. Those SSI algorithms that don’t use exogenous inputs are
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stochastic. To full fill the comparison, a stochastic SSI algorithm is provided in a stochastic 551
algorithm uses output data and provide A and C matrices. They alse provide an innovation model
in order to estimate future states.

APPLICATION OF SSI METHODS FOR SMALL SIGNAL ANALYSIS OF POWER
SYSTEMS

Power system is generally a nonlinear system. Therefore, one should follow the following stages
to achieve small signal properties of a power system; (1) Finding the details of all included elements
{Generator constants, Transformer and line parameters, ... ), (i1) Finding nonlinear model of power
system using constant, parameters and theoretical relations of variables for different power system
elements, (iii) Solving a load flow problem in order to provide an operating point, (iv) Linearization
of nonlinear model using the provided operating peint and (v) Application of modern small signal
methods to provide small signal properties.

Providing an operating point, a nonlinear modeling and linearizing the model are all tough
works in application, especially when the system 1s large. There is always a big gap between the
analysis done on a piece of paper and the system behavior. Such a method 1s not applicable for
monitoring of power system and this is a considerable draw-back for a scientific method.

Classical identification methods are useful in many applhications. When using a classical system
identification method, the higgest difficulty origins from Single-Input/Single-Output (SISO)
structure of such methods. Classical system identification methods may fall inte whirlpool of over
parameterization. Coping with such problems is itself a new problem.

Our suggestion for overcoming such problems 1s to use Subspace System Identification (SSI)
methods. 551 methods are good solution for Multi-Input/Multi-Output (MIMO) systems. They can
be considered as the bridge for passing over the gap between real world system and theoretical
analysis. The next section investigates SSI methods to glorify their useful advantages for small
signal analysis of power systems.

The S5I advantages expressed 1n previous section can be used to overcome the difficulties with
classical small signal analysis of power systems. The above five steps can be reduced to the
following three steps Using SSI methods; (i) Measuring input/output signals of power system,
(ii) Identification of a linear model for power system using SS8I algorithms and (i) Application of
modern small signal methods to provide small signal properties.

As it can be seen, the four first steps vanished and two other steps replaced them. The fifth step
left with no change. Therefore, one can provide small signal analysis of power systems in an easier
and faster way.

Signal measuring is the starting point of system identification. The most effective inputs must
be used since measured signals should have encugh persistent excitement. In attention to
differential equations of a single machine power system (Kundur and Balu, 1998), mechanical
torque and field voltage are proper inputs.

Suppose that input vector u and output vector y of a power system have been measured. As an
identification problem, goal is to find small signal properties of power system (Modes, Damping
Ratios, Oscillation Frequencies, Participation Factors) using several samples of u and y.

It 1s announced that having N samples of input/output vectors and utilizing a subspace system
identification algorithm, one can identify the following state space linear model:

X, =Ax +Bu 3
yf:CxttJrDutt ( )
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One can find system modes and as a result damping factors and damping frequencies by
digging matrix A. But the state vector x of model is not that of real power system obtained using
analytical methods, since the state vector x is not unique. Therefore, mode in state participation
factors can't be utilized using identified A.

In order to cope with such a problem, it 1s proposed to use modal cancnical realization of Eq. 3.
Using T as a similarity transform matrix, one can provide the following modal canonical realization:

7=Az +Bu

y = Cz+ I_)ll, Z s U » Yo (4)
x=Tz, A=T AT,

B=T'B, C=CT, D=D

Generally, A is in Jordan and block diagonal structure. Mode in state participation factor (p,)
1s defined as:

Oy (5)

Pu = da,,

where, a,, is the diagonal element. of system matrix. Since, in Kq. 4, the system matrix is diagonal
with modes as its diagonal elements:

1 i

" on, o

1

. IR - ()

Pu

Therefore, modal cancnical realization can maximize (100%) mode in state participation factor
of model. In order to clarify the peint, suppose that u is zero and z” is initial condition vector of
modal canonical realization. Therefore:

i=Az =z, =eMz i=12-.n (7)

Therefore, the only participated mode in state z;is v, so the participation factor of mode v, in
state z;, is 100% and each mode is mapped to a state.
Considering above point and output equation of Eq. 3, one can write:

yzaz:)yk:iEk‘ ‘:iEk‘Z?e’“, k=1--,n, (8)
i=l i=l

Therefore, output v, is affected by mode v, and mode in output participation factor (p,) is
proposed as:

Pu=¢ Z”,kzl,——',ny andi=1--,n )]

In order to provide participation factors, one may need z° which can be provided through
following relation:
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Z=T"x (10)

x” is the initial condition vector of identified state space model which is also provided by 88I
algorithms.

Some investigators (Hashlamoun ef al., 2009) discuss ancther kind of participation called state
in mode participation factor. In most of literatures state in mode and mode in state participation
factors are the same and they have been used interchangeably, however, there i1s a discussion on
some differences by Hashlamoun et al. (2009),

TEST CASES

Single machine three bus system: Power system shown in Fig. 11s a three bus single machine
power system with no control and exciter. The parameters of the system are those used in
{Kundur and Balu, 1998). It is supposed to extract all small signal properties of system using 551
Algorithms and the methods illustrated in previous sections.

[dentification process should be provided with measured input/output signals. Computer
simulations have been conducted using the system shown in Fig. 1 in order to measure
inputfoutput data. It is recommended to use mechanical torque as input and rotor speed or its angle
as output signals since the extraction of small signal properties of generator angle and speed is
desired to be achieved. Mechanical power can be used as input signal since in a per-unit system,
torque and power are the same.

In order to have enough persistence excitation in input signals, one may add a white noise to
input signals. To provide more realistic operating conditions, one may add a white noise to output
signals, as well. Effect of noises will be investigated later.

300 samples of inputfoutput data acquired through a 30 sec simulation. Using the SSI
algorithms presented in Table 1, some linear models were identified and results are presented in
Table 2. It is clear that to investigate performance of ncises, the noise average cannot be
manipulated because the operating point may vary which is not applicable in this study. Each noise
variance was altered separately in order to see its effect.

In Table 3, one can see that an increase in input noise variance may lead to a better model from
the view of FPE measure but one should be conservative when estimation of small signal properties
is under consideration. Actually, a large increase in input noise variance may alter the operating
point or its absorption area and may lead te instability.

Comparison of S5IM4 and SSIMBS with SSIM2 in Table 2, one can see that output noise has
no effect on subspace system identification. The point is something related to application of
consistence linear algebra tools in SSI1. Left eigenvectors of a wide matrix are not sensitive to
additive white noise considerably (Katayama, 2005). Therefore, the identification is not sensitive
to output noise.

HT

LT v
Transformer . CCT 1V Infinite bus
j0.5 2
. 2
j0.93 CCT2 : E,

Fig. 1: Single Machine 3 bus power system
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Tahle 2: A stochastic subspace system identification algorithm

Step Operation Stochastic algorithm
1 Model 5, = hx +w, gl VO I:WT VT:I _|Q 8 5
v, = Cx +v, v, H s g7 Rp[F
T B T
2 Measured data f(t)= [Yt Yin y{+k—1] - plt)= [Yt-l Y Yt—k]
Block Hankel matrices fa, A, Ay
=B 1= 0’1""’L}, m,, KD -7 A
2k-1<L , k>n - - -
_Ak Ay Aga
4 Extra predefined matrices
5 Liq decomposition
[&] Projection
7 Singular value decomposition (SVD Foo0 ||
gul p ( ) H,, = |:Us Un} s s Uz v
0 X |V
System order n = dim(Zg)
Extended observability matrix 0, =1 %"
10 Controllability matrix C, =3y
11 Future state estimation
12 Estimation of state space matrixes A=0!,0,(p +1:kn,1:in), C=0,(1:n,1:n), cT= Cp{lin,lin)
13 Riccati algebraic equation I, = ATLAT + (€T - AL, CT)(A(0) - CTL,CTYH(C - CTI,CT), TL = imTI,
. . . . — j—
14 Estimation of variance matrixes Q=TII, - ATIAT, 8§ =CT - ATL.CT, R = A(0)- CTICT
15 Estimation of Kalman gain matrix K =(CT - AILCTHA(0) - CTLCTy?
16 Innovation model for state estimation X, =Ax, +Ke,, 5, =Cx, +e,, cov{e,}=R
[1]
\
1C3 ul

. Tas+1 | | | Tes+1 |'/| |

Satuation Satuation
ICI1 Vi IC

(1

. 4

1Cc2

Fig. 2: Voltage regulator model

Since, applied input noise is too weak, the identification process has no effect on normal
operating conditions of power system.

State estimation and LQG controller design: The single inertia model of a turbine generator
connected to an infinite bus is represented by an 11th order nonlinear state space set of equations.
Its state vector is x==[8.50F,, oy ¥r.o0'¥, 0¥, . V., A T,T7 where d d are the rotor load angle relative to the
infinite bus-bar and its differential, w,¥,;0 Y0¥, 0¥, are the electromagnetic states, v, and v,
are voltage regulator states defined in Fig. 2 and A and T (pu torque) are governor states defined
in Fig. 3.
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Fig. 3: Governor states
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Fig. 4. Performance of subspace based LQG control (solid) of nonlinear power system and the
response without LQG (dashed)

The voltage regulator model, for a very fast excitation system, is a simplified representation of
an IEEE Type AC4 aimed to give the transient performance. Field current can be forced up or down
but cannot reverse. The governor model 1s a 2 time-constant approximation and represents main
and interceptor values being governed in parallel to give a fast response. It is assumed that opening
and closing speeds are the same which 1s not typical of present practice, opening being
comparatively slow.

To validate the proposed approach to state estimation and controller design for nonlinear power
systems, some simulations have been arranged using matlab7/simulink software. We used the
nonlinear power system model described in above. It means that the power system is a turbine
generator connected to an infinite bus through a line. The sampled signals were used to identify
a linear model of power system. Then the state space matrices of the model were applied to design
an LQG. The LQG can be redesign in any time instances which is more suitable.

Figure 4 and b show the load angle response of system following a 3-phase fault of 100 msec,
with two controller designs compared with performance without supplementary control. The fault
is assumed to be at the high voltage terminals of the generator transformer when the generator 1s
at 0.8 pu power, unity power factor and the tie-line impedance is assumed to be unchanged. Load
angle to the infinite bus and field voltage are measured and used as a basis of estimation.
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Fig. 5: Performance comparison of analytic LQG (dashed) and subspace based LQG (solid)

An illustration of the performance of a subspace based LQG controller of nonlinear power
system 1s shown in Fig. 5. The LG performance is very good. An 11th order linear model of
nonlinear power system has been used to design a usual LQG controller. The performance of
subspace based LG and analytical LGG have been compared in Fig. 5. Both LQG contreollers are
the same in all common parameters. It is clear that the proposed SSI based LQG controller can
successfully cope with damping of the second swing while there 1s a little increase in the first swing.

CONCLUSIONS

In this study, it is shown that system identification can be very helpful for analysis and
controller design of power systems. Moreover, different models can be 1dentified for different
applications based on sampled signals of power systems. The pitfalls of analytic methods for power
systems can also be avoided using models identified by system 1dentification tools.

The study proposed that subspace system identification is a useful tool for small disturbance
analysis and controller design of power systems. In this case, a state space multi-input/multi-output
model of system was identified using the sampled data and subspace system identification
algorithms. Furthermore, extraction of modes and their participation factors were easily
investigated using SSI methods. However, it was a need to apply some medification in SSI
algorithms. Additionally, It was shown that linear controller design based on the online system

identification was very easy to implement.
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