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Abstract: This study proves that a prime antiflexible derivation alternator R is either
associative or the nucleus is equal to the center of R. Also, a prime antiflexible
derivation alternator ring R with idempotent ¢ # 1 and characteristic # 2, 3 1s
alternative.
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INTRODUCTION

In the study of non-associative rings one of the important classes of rings is derivation
alternator rings. Kleinfeld (1971a) defined two different generalizations of alternative rings,
and for each of these generalizations he proved that the simple rings are alternative. Both
these generalizations defined by Kleinfeld (1971h) are contained in the varieties of derivation
alternator rings. These derivation alternator rings were initially studied by Hentzel et al.
(1980). Hentzel and Smith (1980) investigated the structure of non-associative, flexible
derivation alternator rings and Nimmo (1988) investigated the structure of non-associative,
anti-commutative derivation alternator rings. In this study, the structure of non-associative,
antiflexible derivation alternator rings is investigated.

In this study, it is proven that a prime antiflexible derivation alternator ring 1s either
assoclative or N = Z. Also, it 13 proven that a prime antiflexible derivation alternator ring of
characteristic # 2, 3 with idempotent e # 1 is alternative. At the end of this study an example
of an antiflexible derivation alternator ring which is not alternative is provided.

PRELIMINARIES

A non-associative ring with characteristic # 2 is called a derivation alternator ring if it
satisfies the identities:

(x,x,x)=0 (1)
(yz, x, x) = y(z, x, X) + (y, X, X)Z (2)
(X% y2) =yX X 2) T (XX y)Z (3
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where, we employ the associator (X, v, z) = (xy)z-x(yz). The structwre of non-associative,
antiflexible rings that satisfy Eq. 1-3. We note that antiflexible derivation alternator rings can
be defined simply by Eq. 1 and 2 and the identity:
Alx,y,2)=0 (4
where, A(X,y, 2) = (X, ¥, 2z, ¥, X).

Throughout this study, R will denote antiflexible derivation alternator ring of
characteristic # 2. A ring R is said to be of characteristic # nif nx =0implies x =0,¥ x € R. The
nucleus of N of ing R 1s defined as N = {x e R: (i, R, R) = (R, , R) = (R, R, ) = 0¢. The center
Z of R is defined as 7 = {z e N: (z, R) = (0)}. The middle nucleus M of ring R is defined as
M={meR (R, m,R)=0} Armng Ris called purely antiflexible if the nucleus N of R contains
no ideal of R.

Consider a ring R with an idempotent e. Since derivation alternator rings are power-
associative, it 13 known that R has pierce decomposition with respect to e (Albert, 1948).
Thus, we have R = R, +R,;+R+Ry where Ry, = {x e Riex = ix, xe = jx, 1, =0, 1}.

From Hq. 1 and 4, the following identity is obtained:

Bx,y.z)= (x5, 2y, . xHHz x,¥) = 0 (3)
From Hq. 1-3, the following identity is obtained:
(X, vz, X) = y(X, 7, Xx)Hx, y, X)zZ (6)
By linearizing Eq. 6, the following identity is obtained:
(x, vz, W) =vy(x, z, wHX, y, w)z (7
The following identities hold in any ring:
Flw, x, v, 2)=(Wx, ¥, Z)- (W, Xy, ZHW, X, yZ)-W(X, v, Z) - (W, x, y)z =0 (8)
Clx, y, 2) = xy, 2%y, 2)-(x, 2)y- %, 7, 2)- (2 X, y)Hx, 2 y) =0 €

where, (X, y) = xy-yx.
The following identity is employed often:

(xoy)oz—xo(yoz) = (v, (x, 2) (10)

Since, in any ring (xoyjoz-xo(yoz) = (x, y, ZHX, z, y)H{y, X, 2)-(y, z x)-(zxy)-
(z,y,x)+(y,(%, 2)). where, xoy = xy+yx. We can verify the following identity in any ring,

(xoy, zH(yoz, x}Hzox, y) = (X, ¥, ZHH(y, z, X)Hz, X, yHX, 2, y)H (2, y, XNy, X, 2)
so that from Eq. 5, we get:
(xoy, 7) + (yoz, x) + (zox, y) =0 (1

Forming 0=F(w, x, vy, 2)-F(x, v, z, wHF (v, z, w, x)-F(z, w, X, y) and using Eq. 5, we obtain,
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Gw, %, y, 2) = (WX ¥, 2))~ (X7, z wHHy.(z, w, X))~ (z(w, X, y)) = 0 (12)
As Anderson and Outcult (1968), expanding 0 =F(w, x, v, 2-F (z, v, x, WHF(X, v, z, W)~
Flw, 2 v, xHF(y, z, w, x)-F(x, w, z, yF(z w,x, v)-Fly, x, w, 2-B((w, x),y, 2)-B(x, y),
z, w)-B ((y, z), w, x)- B((z w), x, y) and using Hq. 4, we get:
O0=Hw.x,y,2) =W, X y) ZHx (¥, 2), Wiy, (2. w).xHz (W, X), y) (13)
From 0 = G(x, %, v, x)+(x, B(x, x, y)) it follows that 2(x, (x, y, x)) = 0, so that:
& X y.x)=0 (14)

hence from 0= (x, B(x, v, x)) and 0 = (x, (A(x, X, y)), we have,

(x (y,x,x)=0 (15)

and

x, (x,xy)=0 (16)
From Eq. 2, the identity Eq. 15 becomes:

(v, %), %,%) =0 (17)
hence from Eq. 4, the identity HEq. 17 becomes:
%, (7, %) =0 (18)
From Eq. 17, 18 and using Hq. 5, we get:
x (y,x),x)=0 (19)
Substituting x+z for x in Eq. 19 and subtracting 0 = A{z(y, x), X) + A(z(y, Z), x), we obtain,
20x (v, %), 2) T 2(x, (v, 2), 2HX, (v, 2), X) + (2(y, %), 2) = 0 (20)
Substituting -z for z in Eq. 20 and then adding to Eq. 20 yields.
2x, (v, z), 24z, (v, %), 2) = 0 (21)
Next, linearize Eq. 21 and add A(w, (v, x), z) = O to get:
Kw, x, v, 2) = (x¥, 2),w) + (x(y, W), 2) + (w,(y,x), 2) =0
Computing 0 =H(w, x, v, z) T K(w, X, y, 2) t K(X, y, W, Z)-A(z,(W, X),y), We obtain:
Iw, x, v, 2) = (x(y, 2),w) Hy,(w, x), Z) =0
Expanding 0 =I(w, X, y, ZHI(x, w, ¥, Z)-A(w, (v, z), X). We get:

(W,(x,y),2)=0 (22)
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Lemma 1
Let R be an antiflexible derivation alternator ring. Then,

(i) NR R R)=(NR R.R)
(i) (R, R, RN =(R, R, RN)
(iii) N(R, R, R) = (R, NR, R)
(iv) (R.R, RN =(R,RN,R)
(v) [NAR, R, R)] = (0)

Proof
Applymg Eq. 8toneN. x,y, z€ R, we get:

(nx, y, ) = n(x, y, 7)
%y, z) =& vy, zn

which implies (1) and (11).

(ii1) Follows from the following:

(x,ny, z)=n{x, vy, z) by Eq. 7

(1v) Follows from the following:

(x,yn, z) = (x, ¥, Zn by Eq. 7

For (v), subtract (iv) from (iii), [n,(x, ¥, z)] =0

Which implies [N, (R, R, R)] = (0).

We can easily verify that N ¢ M and MM < M by Eq. 22, (R, R) < M.

Corollary 1
[R.,N]cN.

Proof
ForanyneN,x,y,z€R
(nx,y, z)=n(x,y, z)
=(x,y.2n
=(z.y.xn
=(zy,xn)
=(xn,y,7)
(or) ((n, x),y, z) = 0, which implies ([R, N], R, R) = (0.
Therefore, [R, N] < N.

Lemma 2
Let R be an antiflexible derivation alternator, 1f I 1s the ideal generated by the set (R, N),
thern,

(i) T=(R, N)+RER,N)
(i) IcN

Proof

(i) Forany w,x, v, z€¢ Randn,, n,e N,
(x, nw = ((x, ny),w)+w(x, i),

hence, (x, n))w € (R, NJ*R(R, N).
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Also, (y (z, np)w = y((z, n,)w)
= y(((z, np).w)+w(z, ;)
=y(((z, np),w) + (y, W)z ny)
Hence, (y(z, n,))we(R, N) + R(R, N)
Thus, (R, NHR(R, N} is ideal of R and it contains (R, N).
Therefore, I < (R, N} +R(R, N).
The converse inclusion is clear. Thus T = (R, N)+R(R, N).
(1) Since, I = (RN) +R(R,N) and R = (R,N), using Eq. 5 and Lemmal, it 1s immediate that the
following are all equivalent:

(a) TcN,

(b) (LR, R)=(0),

(c) (RIR,NLR,R)=(0)
(d) [R,NJ(R, R, R)=(0)

As Celik (1972), letx, y ¢ Rand n £ N. Then by Eq. 9 (x1, y)-x(1, y)-(x, ym =0
(or) x(y, 1) = - (xn, Y}Hx, y)n
So, x(y, ) £ (R, R)+HR, R)N.
But, (R, R)HR, R)N < M;
hence, x(y, n) € M
which implies that R(R, N) = M.
By defimtion of middle nucleus M of ring R, (R, R(R, N), R) = (0).
But Lemma 1 and Corollary 1 implies that
(B RR,N),R)= (R, N)R, R, R).
Thus by (d), we have I ¢ N and the proof of the Lemma is completed.

MAIN RESULTS

Theorem 1

If R 15 a prime antiflexible derivation alternator ring, then R 1s either associative or
N=7.

Proof
Suppose that R 1s not associative. Then there exists x, y, z € R, such that (x, y, 2) # 0. Let
A be the ideal generated by (x, ¥, ). A is a non zero ideal of R.
SupposepeTandte R,
Since, I is anideal and I = N,
(x.y.2p= (X% y,2p) = 0.
Then this identity together with
(x,y, 2t = -xly, z, O+(xy, z, O-(%, yz, OH(x, v, zt) implies that Al = (0).
Since, A # (0)and R is prime, we must have I = (0).
In particular [R, N] = (0) or N = Z.
This completes the proof.
Using the definition of purely antiflexible, we state above theorem 1in a slightly more
general form the following corollary:

Corollary 2
A pnme antiflexible derivation alternator ring R 1s either associative (or) purely
antiflexible.
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Theorem 2
Let R be an antiflexible derivation alternator ring with idempotent e. Then e is the identity
element of R if and only if e N.

Proof
Assume thate ¢ N. So,e ¢ 7.
Comnsider pierce decomposition R = R, +R 7R, +R,; of R with respect to e.
Since, R, =eR,, = R,,e = (0},
Rp=Rye=eRy, = (0),
R =R, +Ry,.
Also, eeN mmplies that R, and R, are ideal of R. Also we have R, R, = (0).
R 1s prime, ec R, implies that Ry, = (0). Thus R = R, and e 1s the idempotent element of R.

Corollary 3
If R is simple antiflexible derivation alternator ring with idempotent ¢ £ N, then e is the
identity element of R.

Corollary 4
If R 15 a prime antiflexible derivation alternator ring, then the nucleus N of R has no zero
division of zero.

Proof

By theorem 1, N = Z = Center of R. By defimtion of Z, the ideal of R generated by the
element z € 7 1s zR+z where [ = ning of integers. Ther, (z R)(zR) c (z z )R implies that 7 has
no non zero divisions of zero.

Theorem 3
Let R be a prime antiflexible derivation alternator ring with idempotent # 1 and
characteristic # 2,3. Then R 1s alternative.

Proof
From Eq. 3, the identity Eq. 16 becomes:

xx &xyN=0 (23)

In particular, for any idempotent e we have,

(e,e,(e,y))=0 (24)

Thus using Albert decomposition, Eq. 24 and also Eq. 3 and 1 imply (e, e, x) = (e, e, eox)
= 2{e,e;x)e. Tteration then given 2(e, e, x)e = 4[(e, e, ex)e]e = 4(e, e, X)e, so that 2(e, e, x)e = 0.
This in twrn means (e, e, x) = 2(e, e, x)e = 0 for any idempotent e. At this point the argument
given in £3 of Kleinfeld and Smith (1979) shows that R is alternative, which completes the
proof of the theorem.

Corollary 5
Let R be a prime antiflexible derivation alternator ring with idempotent e # 1 and
characteristic = 2, 3. Then R 1is associative.
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The following example illustrates that an antiflexible derivation alternator ring which is
not alternative.

Example
Suppose that the ring R is defined by the following multiplication table together with all
finite sums of e, a, b, ¢, d, h, such that x+x = 2x # 0.

. e a b c d h
e e b 0 0 0 0
a h c 0 0 0 0
b 0 0 0 0 0 0
[ 0 0 0 0 0 0
d 0 0 0 0 0 0
h h+b b 0 0 0 0

We observe that (a,a,a) = a’a —aa’ = ca —ac = 0.
Therefore, ring R satisfies Eq. 1.
It 18 enough to check identity Eq. 4, (e, e, a) = (a, e, )

(e, e, a)=ea—e(ea) =b

(a,e.e) = (ae)e-ae =he-h
=h+b-h
=h.

Also, to check Eq. 2,

(ab, e, e) =a(b,e,e)+(a e eb

(ab,e,e) -a(b,ee) - (ae,e)b = (ab)ee)-(ab.ele-ai(bele— ble.e)}-i{(ac)e—aeltb
=0e—-0e¢-af0e-bel-{the-hlb
=0- 0-af{0-0}-{h+b-hib
=bb=0.

Hence, R is an antiflexible derivation alternator ring, but not alternative.
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