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Abstract: The aim of the study is to characterize all finite groups that satisfy the normalizer
conditions stated in this manuscript. Group and character theoretic methods are used in the
study and it is proved that such groups are not simple. Specifically, the following result is
established. Let a finite group G have a maximal subgroup H satisfying: (DH = XP<t>,
where P=<x v: X’ =y =[x, y] = 1> and ¢ = (zt)* = 1 for all zin H. (I[) X = RxKxT,
where R has odd order and y acts fixed-point-free on X, K and T are 2-groups, Xy centralizes
K and acts fixed-pint-free on T; x centralizes T and acts fixed-point-frees on K. T#1, K=#1.
(TIT) H is the ouly maximal subgroup of G containing XP and |Q,(Z(KxT))|>4. Then G is not
a simple group.

Key words: Maximal subgroup, normalizer conditions, fixed-point-free, centralize, simple
group

INTRODUCTION

The problem originated from the study of alternating group A, on 7 letters, by Liggonah (1977).
It is the generalization of the proposition in the proof of the main result established by Liggonah
(1977).

The notations used are standard, as used and defined in Gorenstein (1968). Conditions (i) through
(iii) are conditions on the subgroup H of G, Giving the structure of H. These are the normalizer
conditions referred to in the theorem.

The proof of the theorem is by contradiction. We suppose that G is simple and satisfies the
conditions of the theorem and aim at arriving at a contradiction.

The method used in the proof involves studying the fision of involutions in H, By using character
and group theoretic methods.

We divide the proof through a series of lemmas. From now on, G is assumed to be simple and
satisfies conditions (i) through (iii).

PROOF OF THE THEOREM

Lemma 1
For each class L of involutions of H, either there is an element | ¢ L such that 17'vl =y~ or
L0, (H).

Proof

Conditions (i) to (iii) imply that N(X) = H = N (KxT). Since KxT admits <y><t> and y acts
fixed-point-free, KxT is unique in (KxT)<t> and of class < 2 by Stephen and Tyrer (1973a, b).
Hence (KxT)<t> is a Sylow 2-subgroup of its own normalizer, so it is a Sylow 2-subgroup of G.
Consider H, =(RxK~=T)<y><t>. The principal 3-block B,(H,) of H, has the form:
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If 17yl = y'is false for all 1 €L, then # (I'l' = sy) = 0 for all 3" -elements s commuting with y, by
Higman (1968); where #(1'1" = sy} is the number of comjugates of 1 with product equal to sy. Applying
Higman (1968) results, we

#HI'T =sy) = [HCe, I x, (D* %) =0
where, summation is over all characters ¥ in By(H,). Then this implies that
E y(n(? = 0 giving 1+8%d - (5+1)¥(d+1) =0.

That is, (5-dY = 0, giving & = d. Then 1 lies in the kemel of every character in the principal 3-block
of H,. By Brauer (19644, b), 1 lies in Q,"(H,) = O, (H) and O, (H) = RxKxT and hence L. « O;'(H)
as required.

Hence we have that a class L of involutions in H, either there is an element 1L such that
I7yl=y~" or L c O, (H).

Corollary
The involutions of H not in X = RxKxT are all conjugate (even in H).

Proof

The extended centralizer of v in H, is C*x,(y) = <y><t>, s0 all involutions of H, not in X must
be in <y><t>= D, by Lemma 1 {otherwise they will lie in O, (H,) = X). Using the fact that all
involutions of D, are conjugate and C*,{y) = P<t>, all involutions of Hnotin O,"(H)=0; (H,) =X
are conjugate to t as required.

We have seen in the proof of Lemma 1 that KT is weakly closed in (KxT)<t>, a Sylow 2-
subgroup of G and of class <2 and any involution of H is conjugate in H to t or lies in KxT. Since
Q,(Z(KxT)) is characteristic in KxT, elements of Q,(Z(KxT)) are conjugate in G only if they are
conjugate in N (€, (Z(K=T))).

By maximality of H and the supposition that G is simple, we must have that
N, (Z{K=T)) = H. In particular, if k is an element of €,(Z{K~=T)), its conjugates in £,(Z(K<T))
are k, k7, kK2, Since |[Q,(Z(KxT))|[>4, we can always pick k so as not to be conjugate to tin H. From
now on, we assume that such a k has been picked.

Lemma 2
The only conjugates of k in G lying in (KT)<t> are k, k’, k%

Proof
By the corollary and the underlying assumption, any further conjugates k2 lies in KxT, whence
ke k, ¥, k¥ generate an abelian group. Let A be a subgroup of KxT chosen such that:

« A contains the greatest possible number of conjugates of k
«  Aisaslarge as possible
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We first show that the conjugates of k lying in A are already conjugate in N;(A). Indeed, let ke A
Thenk® £ A%and so A% < C(k). Since (KxT)<t>is a Sylow 2-subgroup of G and of C,{k), we can
assume az < (KxT)<t>. An element of (KxT)<t> not in KxT transforms k’ to k™ since it must

involve t, so that an abelian subgroup of (KxT)<t> not in KxT ¢an not contain k¥ or k™.

Furthermore, the conjugates of kin 4¢” liein KxT. Thus, if ¢ is not contained in K+T, then
( a2 (KxT)) <k’>is an abelian subgroup of KxT containing more conjugates of k than A, contrary
to the choice of A. Hence ps? < KxT.

By choice of A, each A and ag” are maximal abelian subgroups of KxT and since KxT is of
class at most 2, (KxT) = Z(KxT) = A and because [KxT, A] = (KxT) = A and applying theorem
2.1 in Gorenstein (1968), page 18, gives A, ps" are normal in KxT. By weak closure of KxT in
(KxT)<t>, it means that A and Ag'l are conjugate in N.{K=T) which is H. Since y acts fixed-point-
free, <A, ag” >is abelian by Stephen and Taylor, soitimplies A = 4¢* by maximality of A. Thus the
conjugates of A in H are A and A" Replacing g by tg if necessary, we can assume A = A% which
implies g eN4(A). Hence conjugates of klying in A are already conjugate in N;(A). A is normalized

by P so N5(A) = XP and hence N (A) =H or Ny(A) = XP. This implies the only conjugates of k in
Aare k, K, kK as required.

Lemma 3
The element t is not conjugate to any element of KxT in Cg(k).

Proof

By Lemma 2, the conjugates of k are k, k°, k¥ and kk’k*® = 1 because v fixes kk’k? and v acts
fixed-point-free. This implies the only conjugates of k<k> in C,(k)/<k> is k*<k>. By Glaubermann
(19606), it implies that k*<k> & Z{C,(k)/<k>). This means that for some normal subgroup M of C.(k)
of odd arder, M<k, k"> is normal in C(k). By Frattini argument, this gives Co(k) = M Neggo(<k, kK>).
Since <k, kK> <« Q,(Z(K*T)) and because of the fact that the conjugates of k in H lying in (KxT)<t>
are k, ¥, K, then <k, k"> = H. Hence by maximality of H, we have N{<k, k=) = H. Hence Cq(k)
= MX<t> or Cgk) = M¥<x><t> Since KxT < ¥, we have tis not conjugate to any element of KxT
from the structure of Cg(k) as required.

We could stop here, at this stage, by quoting Goldschmidt’s results, presented by Thompson
(1968), concerning strongly closed abelian 2-subgroups because we have shown that <k, k¥> is a
strongly closed abelian 2-subgroup of C(k). But we can also finish more concisely.

Lemma 4
The element t is conjugate in C.(k) to some element of KxT.

Proof

By Thompson’s Transfer Theorem given by Thompson (1968), t is conjugate in G to some
element of KxT, say t# eKxT. then both k# and <k, kK> centralize t2, so we can chose h in C4(t%) so
that k# lies in the same Sylow 2-subgroup of C.(tf) as <k, k’>. By Lemma 3, a Sylow 2-subgroup of
G contains ouly three conjugates of k, so this implies k= = k** for some i = 1,2,3. Since heC(t7), 1237
lies in KxT and ghy™ eCg(k), so tis conjugate in C.(k) to some element of KxT, proving the lemma.

The contradiction between Lemma 3 and Lemma 4 completes the proof of the theorem. That is,
G is not simple.
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