

Asian Journal of Algebra

ISSN 1994-540X

Weakly C*-Normal Subgroups and p-Nilpotency of Finite Groups*

Shitian Liu College of Science, Sichuan University of Science and Engineering, Zigong, Sichuan, 643000, China

Abstract: A subgroup H is called to be weakly c*-normal in G if there exists a subnormal subgroup K such that G = HK and $H \cap K$ is s-quasi normal embedded in G.The following result is established: Let G be a group such that G is S_4 -free. Also let p be the smallest prime dividing the order of G and P a Sylow p-subgroup of G. If every minimal subgroup of P of order p or 4 (when p = 2) is weakly c*-normal in $N_G(P)$ and when p = 2 P is quaternion-free, then G is p-nilpotent. The main result is established and a generalization of some authors'.

Key words: Sylow p-subgroups, weakly c*-normal subgroups p-nilpotent, minimal subgroup

INTRODUCTION

A subgroup is quasi normal in G if for every subgroup K of G such that HK = KH, by Ore (1937) which is a generalization of normality. A subgroup H of G is s-quasi normal if H permutes with all Sylow subgroups of G, by Kegel (1962) and extensive studied by Deskins (1963). A subgroup H is c^* -normal in G if there exists a normal subgroup K of G such that G = HK and $H \cap K$ is s-quasi normal embedded in G, by Wei and Wang (2007). Recently, Liu (2009) established some results on the base of weakly c^* -normal subgroups of finite groups.

SOME DEFINITION AND PRELIMINARIES

Lemma 1

Suppose that U is s-quasi normally embedded in a group G, $H \le G$ and $K \triangleleft G$. Then:

- If U≤H, then U is s-quasi normally embedded in H
- If UK is s-quasi normally embedded in G, then UK/K is s-quasi normally embedded in G/K
- K≤H and H/K is s-quasi normally embedded in G/K, then H is s-quasi normally embedded in G

Proof

Lemma 1 by Ballester-Bolinches and Pearaza-Anguilera (1998).

Lemma 2

Let G be a group. Then we have,

- If H is weakly c*-normal in G and H≤weakly c*-normal in K
- If N⊲G and N≤H. Then H is H is weakly c*-normal in G if and only if H/N is H is weakly c*-normal in G/N
- Let be a set of primes. H is a -subgroup of G and N a normal -subgroup of G. If H is weakly c*-normal in G. Then HN/N is weakly c*-normal in G/N

Proof

Lemma 2.2 by Liu (2009).

^{*}Originally Published in Asian Journal of Algebra, 2009

Lemma 3

Let G be a group, K an s-quasi normal subgroup of G, P a Sylow p-subgroup of K, where, p is prime number of |G|. If $P \le O_n(G)$ or $K_G = 1$, then P is s-quasi normal in G.

Proof

Lemma 2.5 by Wei and Wang (2007).

Lemma 4

Let G be a group and P a s-quasi normal p-subgroups of G, where, P is a prime number of |G|, then $O^p(G) \le N_G(P)$.

Proof

Lemma 2.2 by Li et al. (2003).

Lemma 5

Let G be a group and p a prime dividing |G| with (|G|, p-1) = 1. Then:

- If N is normal in G of order p, then N is in Z(G)
- If G has a cyclic Sylow p-subgroup, then G is p-nilpotent
- If $M \le G$ and |G:M| = p, then $M \triangleleft G$

Proof

Lemma 2.8 by Wei and Wang (2007).

Lemma 6

Let P be a p-subgroup of a group G and N a normal π' -subgroup of G for some prime p. If A is a minimal subgroup of P and A is weakly c*-normal in $N_G(P)$, then AN/N is weakly c*-normal in $N_G(P)N/N$.

Proof

If A is normal in G, then AN/N is weakly c*-normal in $N_G(P)N/N$. If A is not normal in G, then by hypotheses, there exists a subgroup K of $N_G(P)$ such that $N_G(P) = AK$ and $A \cap K = 1$. Obviously $N_G(P)N/N = (AN/N)(KN/N)$. If $(AN/N)\cap (KN/N) \neq 1$, then $K \leq AN$ and therefore $N_G(P)N/N = KN/N$. By comparing the order, there has a contradiction. So, AN/N is weakly c*-normal in $N_G(P)N/N$.

Lemma 7

Let p be the smallest prime dividing |G| and P a Sylow p-subgroup of G. If every minimal subgroup of P is AN/N is weakly c*-normal in G and when p=2 either every cyclic subgroup of P is weakly c*-normal in G or P is quaternion-free, then G is p-nilpotent.

Proof

Suppose that the result is false and Let G be a minimal counter example. By lemma 2(1), the hypotheses is inherited by subgroups. Therefore, G is minimal non-p-nilpotent group. By Ito (Robinson, 2003, Theorem 10.3.3) G is a minimal non-nilpotent. Then G is of order $p^{\alpha}q^{\beta}$, where, q is a prime, $q \neq p$, P is normal in G and any Sylow q-subgroup Q of G is cyclic. Moreover, P is of exponent p if p is odd and exponent at most 4 if p=2 (Robinson, 2003).

Let A be a minimal subgroup of P. Then by hypotheses, there exists a subgroup K of G such that G = AK and $A \cap K$ is s-quasi normally embedded in G. If A is not normal in G, then K is a maximal

subgroup of G of index p. Since, P is the smallest prime divisor of G. This leads that K is normal in G and so the Sylow q-subgroup of K are normal in G, thus G is nilpotent, a contradiction. So, A is normal in G, this leads that A is in the center of G. If either p is odd, or p=2 and every cyclic subgroup of P is weakly c*-normal in G, then G is p-nilpotent by Ito'lemma. Then let $B=\langle b \rangle$ be a subgroup of P of order 4. Then by hypotheses, there exists a subnormal subgroup K such that G=BK and $B\cap K$ is s-quasinormally embedded in G. If |G:K|=4, then $K\langle b^2\rangle$ is a subgroup of index 2 and therefore is normal in G. This implies that the Sylow q-subgroup are normal in G. Then G is nilpotent. A contradiction. If |G:K|=2, then K is normal in G, we also get a contradiction. Then B is normal in G. If B \neq P, then, since G is a minimal non-nilpotent group and the exponent of P is at most 4, we have $P \leq C_G(Q)$ and $G=P\times Q$ is nilpotent, another contradiction. The lemma is proved.

MAIN RESULTS

Theorem 1

Let G be a group such that G is S_4 -free. Also let p be the smallest prime dividing the order of G and P a Sylow p-subgroup of G. If every minimal subgroup of P of order p or 4(when p=2) is weakly c*-normal in $N_G(P)$ and when p=2 P is quaternion-free, then G is p-nilpotent.

Proof

Assume that the theorem is false and let G be a counter example of minimal order. Then:

(1) $O_p(G) = 1$

If $O_{p'}(G) \neq 1$, then we can chose a minimal normal subgroup N of G such that $N \leq O_p(G)$. Now consider the quotient group G/N. Obviously PN/N is a Sylow p-subgroup of G/N. By lemma 6, AN/N is weakly c*-normal in $N_G(P)N/N$. The minimality of G implies that G/N is p-nilpotent and hence G is p-nilpotent, a contradiction. Thus $O_p(G) = 1$.

(2) For every subgroup M of G satisfying P≤M<G, M must be p-nilpotent. In particular, N_G(P) is p-nilpotent

If $N_G(P) = G$, then, by lemma 7, G is p-nilpotent. Hence, $N_G(P) < G$. Since $N_G(P) \cap M \le N_M(P) \le N_G(P)$, M satisfying the hypotheses of our theorem. The minimal choice of G implies that M is p-nilpotent.

(3) G is solvable. Furthermore, P is a maximal subgroup of G and a Hall p'-subgroup of G is an elementary abelian q-subgroup Q for some prime q

Since, G is not p-nilpotent, by Frobenius' theorem (Robinson, 2003), theorem 10.3.2), there exists a subgroup H of P such that $N_G(H)$ is not p-nilpotent. So by (2) we think that $N_G(H)$ is not p-nilpotent but $N_G(K)$ is p-nilpotent for every subgroup K of P such that $K < K \le P$. Now we show $N_G(H) = G$. Suppose that $N_G(H) < G$. Then, we $H < P^* \le P$ for some Sylow p-subgroup P* of $N_G(H)$. Since every minimal subgroups of P* of order p or 4 is weakly c*-normal in $N_G(P)$. On the other hand, by the choice of H, $N_G(P^*)$ is p-nilpotent and so $N_{NG(H)}(P^*)$ is p-nilpotent. This implies that $N_G(H)$ satisfying the hypotheses of our theorem for its Sylow p-subgroup P* of $N_G(H)$. Now, the choice of G implies that $N_G(H)$ is p-nilpotent, a contradiction. Hence, $O_p(G) \ne 1$ and $N_G(K)$ is p-nilpotent for every subgroup K of P with $O_p(G) \le K \le P$. Now, by Frobenius' theorem (Robinson, 2003), theorem 10.3.2), $G/O_p(G)$ is p-nilpotent and hence G is p-nilpotent. By the odd order thorem, G is solvable.

Let $T/O_p(G)$ be a chief factor of G. Then $T/O_p(G)$ is an elementary abelian q-group for some prime $q \neq p$ and there exists a Sylow q-subgroup Q of T such that $T = QQ_p(G)$. It is clear that PT = PQ. If PT < G, then, by (2), PT is p-nilpotent and so $Q \leq C_G(O_p(G))$, which contradicts the fact $C_G(O_p(G)) \leq O_p(G)$ since, G is solvable. Hence, G = PQ and G is a Hall p'-subgroup of G. The minimality of $T/O_p(G)$ implies that $P/O_p(G)$ is a maximal subgroup of $G/O_p(G)$ and therefore P is a maximal subgroup of G.

(4) G = O_p(G)L, where, L is a non-abelian split extension of a normal Sylow q-subgroup Q by a cyclic p-subgroup <a>, a^p ∈ Z(L) and the action of a on Q is irreducible

Let $P_1/O_p(G)$ be a normal p-complement of $P/O_p(G)$. By Schur-Zassenhaus' theorem we have $D=O_n(G)Q$.

(5) If $\Omega_1(O_p(G)) \cap \langle a \rangle = 1$, then $[\Omega_1(O_p(G)), Q] = 1$

Set $G_i = \Omega_i(O_p(G))L$. Obviously, $\Omega_i(O_p(G))$ is an elementary abelian and characteristic in $O_p(G)$. Since, for any $1 \neq x \in \Omega_i(O_p(G))$, < x > is normal in G, < x > < a > = < a > < x >. Hence $x^a \in \Omega_i(O_p(G)) \cap (< x > < a >$. This implies that a induces a power automorphism of p-power order in the elementary abelian p-group $\Omega_i(O_p(G))$. Thus $[\Omega_i(O_p(G)), a] = 1$. If there exists an element $1 \neq x \in \Omega_i(O_p(G))$ and an element $1 \neq g \in Q$ such that $x^g = x_1 \neq x$, then $x^{a^{-1}g_0} = x_1$ and therefore $x^{a^{-1}g_0g^{-1}} = x$. It follows that $<\Omega_i(O_p(G))$, < a >, $a^{-1} gag^{-1} > \in C_{Gi}$. Since, the action of a on Q is irreducible, $Q\Omega_i(O_p(G))/\Omega_i(O_p(G))$ is a minimal normal subgroup of $G_i/O_p(G)$ and $\Omega_iO_p(G)$ < a > is a maximal subgroup in G_i . Thus, $CG_i(x) = \Omega_i(O_p(G)) < a >$ or G_i . But $1 \neq a^{-1}gag^{-1} \in Q$. Hence $CG_i(x) = G_i$, in contradiction to $x^g \neq x$. So $[\Omega_i(O_p(G)), Q] = 1$.

(6) The final contradiction

We consider the following two cases:

Case 1

p>2 or p=2 and P is quaternion-free. Set $G_i=\Omega_i(O_p(G))L$. If $\Omega_i(O_p(G))\cap \langle a\rangle=1$, then by (5) $[\Omega_i(O_p(G)),Q]=1$.

Assume that $\Omega_1(O_p(G))\cap \langle a\rangle = \langle a^{pa}\rangle$. Then $\langle a^{pa}\rangle$ is a cyclic group with order p and $\langle a^{pa}\rangle \leq Z(G_1)$ since $a^p\leq Z(L)$. Consider th quotient $G_1/\langle a^{pa}\rangle$. It is clear that $(\Omega_1(O_p(G))/\langle a^{pa}\rangle)\cap (\langle a\rangle/\langle a^{pa}\rangle)=1$ and every subgroup K of $\Omega_1(O_p(G))$ of order p is weakly c*-normal in $N_G(P)$ by hypotheses. Then there exists a subnormal subgroup H such that $N_G(P)=HK$ and $H\cap K$ is s-quasi normally embedded in G. Let W denote $H\cap K$. Then W is a Sylow p-subgroup of some s-quasi normal subgroup M of G and so W is normal in M with $Q\leq M$. Since MP=PM, $WQ=W\times Q$. So, $[O_p(G),Q]=1$ and Q is normal in G, a contradiction.

Case 2

 $p=2 \ \ \text{and every cyclic subgroup of with order 2 or 4 is weakly c*-normal in $N_G(P)$. Let $G_2=\Omega_2(O_p(G))$L. If $\Omega(O_p(G))\cap <a>=1$, then by (5) $[\Omega(O_p(G)), Q]=1$. Now assume that $\Omega_1(O_p(G))\cap <a>=A$=<c> is a cyclic group of order 2. It is clear that $A\le Z(\Omega_1(O_p(G)))$. Let $x\in\Omega_2(O_p(G))$ with order 4. By hypothesis, $<x>$ is weakly c*-normal in $N_G(P)$. There exists a subnormal K of $N_G(P)$ such that $N_G(P)=<x>K$ and $<x>\cap K$ is s-quasi normally embedded in G. Set $W=<x>\cap K$, then there exists a s-quasi normal subgroup H of G such that W is a Sylow p-subgroup of H. If $W=H$, then W is s-quasi normal in G, so $WQ=QW$ is p-nilpotent by lemma 5 and by lemma 4 Q is normal in G, a contradiction. If $H=G$, there has nothing to prove. So, we have $W<H<G$. If $G=PH$, then $G=PH=PQ$. Therefore, $Q<H$ and $PQ<G$, a contradiction. Then $PH<G$ and by (2) PH is p-nilpotent. Let $Q*$ be the normal p-complement of PH, $PH=PQ*=Q*P$ and so $WQ*=Q*W=W<Q*$. So, W is normal in G, by (1) G/W is p-nilpotent, then G is p-nilpotent, contradiction.$

Remark 1

The hypothesis that G is S_4 -free can't be removed. Let $G = S_4$, P the Sylow p-subgroup. Then $P = N_G(P)$ and every minimal subgroup of P is weakly c*-normal in $N_G(P)$, But G is not 2-nilpotent.

Remark 2

The hypothesis that P is quaternion-free can not be removed. Let $A = \langle a, b : a^4 = 1, b^2 = a^2, b^{-1}ab = a^{-1} \rangle$ be a quaternion group, then A has an automorphism of order 3. Let $G = \langle \alpha \rangle \triangleright \langle A, \text{ clear} \rangle$ then every element of G with order 2 lies in that center of G and is weakly c*-normal in $N_G(P)$, Bu G is not 2-nilpotent.

Corollary 1

Let G be a finite group, p a prime dividing the order of G such that (|G|,p-1) = 1. If there exists a normal subgroup N of G such that G/N is p-nilpotent and every subgroup of prime and order 4 of G is s-quasi normally embedded in G, then G is p-nilpotent.

Proof

Theorem 4.1 by Li et al. (2005).

CONCLUSION

Let G be a group such that G is S_4 -free. Also let p be the smallest prime dividing the order of G and P a Sylow p-subgroup of G. If every minimal subgroup of P of order p or 4 (when p = 2) is weakly c*-normal in $N_G(P)$ and when p = 2 P is quaternion-free, then G is p-nilpotent.

REFERENCES

Ballester-Bolinches, A. and M.C. Pedraza-Aguilera, 1998. Sufficient conditions for supersolvability of finite groups. J. Pure Appl. Algebra, 127: 113-128.

Deskins, W.E., 1963. On quasi normal subgroups of finite groups. Math. Z., 82: 125-132.

Kegel, O., 1962. Sylow-gruppen and subnormalteiler endlincher gruppen. Math. Z., 78: 205-221.

Li, Y., Y. Wang and H. Wei, 2003. The influence of p-quasinormality of some subgroups of a finite group Archiv der Mathematic, 81: 245-252.

Li, Y., Y. Wang and H. Wei, 2005. On p-nilpotency of finite groups with some subgroups p-quasi normally embedded. Acta Math. Hungar., 108: 283-298.

Liu, S., 2009. On the p-nilpotency of finite groups, to appear. J. Math. Res.

Ore, O., 1937. Structure and group theory I. Duke Math. J., 3: 149-174.

Robinson, D.J.S., 2003. A Course in the Theory of Groups. 2nd Edn., Springer-Valag, New York. Wei, H. and Y. Wang, 2007. On C*-normality and its properties. J. Group Theory, 10: 211-223.