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ABSTRACT

This study introduce and advance the characteristics of S-lattice measurable function and T-
lattice measurable function. It has been proved that the integrations of these lattice measurable
funetions are made equal. Also it establishes the result that the two iterated integrals of lattice
measurable functions are finite and equal. Finally, it confirms that for the lattice o-finiteness, the
Lebesgue lattice measure cannot be omitted and the condition that fis a lattice measurable with

respect to the lattice o-algebra.

Key words: Lattice o-algebra, measure, lattice measure, o-finite measure, product lattice

measurable functions and lattice o-finiteness

INTRODUCTION

The concept of lattice measure was initiated by Gabor (1964). For the extension of this theme
literature took some time. Afterward, the concepts of lattice sigma algebra and lattice measure on
a lattice sigma algebra launched by Tanaka (2009). Recently the concepts of lattice measurable set,
lattice measure space and lattice o-finite measure were established by Kumar et al. (2011a, b).

The perception of measurable Borel lattices was introduced and studied by Kumar et al
{2011a). Further Radon-Nikodym theorem for signed lattice measure was expanded by
Kumar et al. (2011a). A class of super lattice measurable sets was introduced by Pramada et al.
(2011). Lebesgue decomposition and its uniqueness of a signed lattice measure were studied
successfully by Kumar et al. (2012). A class of positive lattice measurable sets and positive lattice
measurable functions was obtained by Pramada et al. (2012a). A characterization of complex
integrable lattice functions and p-free lattices was made by Pramada et al. (2012¢). Further
recently a characterization of boclean wvalued star and mega lattice functions was obtained
by Pramada et al. (2012b),

This manuscript is aimed to the study of concept of product lattice measurable functions and
their various characterizations. In particular these functions are observed by defined over
topologieal spaces. Also it has been investigated the characteristics of 5-lattice measurable function
and T-lattice measurable functions. The concept of iterated integral of a product lattice measurable
function has been defined in order to identify that the two iterated integrals of a product lattice
measurable function are finite and equal. It is also aimed to get a condition that product lattice
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measurable function is lattice measurable 15 obtained and the condition that product lattice

measurable function 1s lattice measurable cannot be dropped.

PRELIMINARIES

This section briefly reviews the well-known facts of Birkhoff (1967) lattice theory.

The system (L, /4, V), where L is a non empty set, A and V are two binary operations on L, is
called a lattice i1f A and V satisfies, for any elements x, v, z, in L:

 (L.1) commutative law: x\y = y/Ax and x\Vy = yVx

« {L2) associative law: ¥A(y/\z) = (x/\y)/\z and xV{yVz) = (xVy)Vz

 (L.3) absorption law: xV/(y/Ax) = x and x\(yVx) = x. Hereafter, the lattice (1, /A, V) will often be
written as L for simplicity. A lattice (I, /A, V) is called distributive if, for any x, v, z,in L

« (L4) distributive law holds: xV(yAz) = (x\y) AlxVz) and xA(yVz) = ZAVV(XAZ)

A lattice L is called complete if, for any subset A of L, L, contains the supremum ¥V A and the
infimum A A, If L is complete, then L itself includes the maximum and minimum elements which
are often denoted by 1 and 0 or I and O, respectively.

A distributive lattice is called a Boolean lattice if for any element xin L, there exists a unique
complement x° such that.

wVx*=1 (LB)the law of excluded muddle
x\x* =0 (L6) the law of non-contradiction

Let L be a lattice and ¢: L»L be an operator. Then ¢ is called a lattice complement in L if the
following conditions are satisfied.

(LB) and (L8): Vxell, xVx* =1 and xAx* =0
(L.7) the law of contrapositive: V¥, yeLi, x<y implies x*>y°
{(L.8) the law of double negation: VxeL{x%°=x

Definition 1: If a lattice L satisfies the following conditions, then it is called a lattice s-algebra:

(1) for all hell, heel.
(2) ifh, eLforn=1,2 3 .. then:

We denote o(l.) =03, as the lattice o0-algebra generated by L.

Example 1 (Halmos, 1974): 1. {®, X}{that is the empty set together with entire set) is a lattice
o-algebra. 2: P (X) power set of any nonempty set X is a lattice o-algebra.

Example 2: Let X =% and L = {measurable subsets of &} with usual ordering (<).
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Here, Liis a lattice and o(l.) = [ is a lattice o-algebra generated by L, where, & 1s a extended
real number system.

Example 3: Let X be any non-empty set, L = {All topologies on X} Here, L is a complete lattice but
not a g-algebra.

Example 4 (Halmos, 1974): Let X =} and L. = {Kc®/K is finite or E* is finite}.
Here, L is lattice algebra but not lattice o-algebra.

Definition 2: The entire set X together with a lattice o-algebra [} is said to be lattice measurable
space, it 1s denoted by the ordered pair (X, ).

Example 5: Let X = & and L. = {All Lebesgue measurable sub sets of &}. Then it can be verified
that (&, ) is a lattice measurable space.

Definition 3: If the mapping w: I-Rufe} satisfies the following properties, then u is called a lattice
measure on the lattice g-algebra o(l).

(1) ple)=u0=0

(2) For all h, geB, such that uth), p(g)=0 and hzg=uth)<plg)
(3) Forall h, gel, pthvg)+uthAg) = plh)+plg)

(4) Ifh B, neNsuch that h,<h,< ... <h < ..., then:

u[n\!lhn] = limp(h,)

Note 1: Let p, and p, be lattice measures defined on the same lattice o-algebra 5. If one of them is
finite, then the set function wE) = p, K)-p,(E), Eell is well defined and is countably additive
on B3,

Example 6 (Royden, 1981): Let X be any set and 0 = P(X) be the class of all sub sets
of X. Define for any Ael3, w(A) = +eo if A is infinite = |A| if A is finite, where [A] is the number of
elements in A,

Then pis a countable additive set function defined on [ and hence pis a lattice measure on 3.

Definition 4: A set A is said to be lattice measurable set or lattice measurable if A belongs to .

Example 7 (Kumar ef al., 2011a): The interval (a, «) is a lattice measurable under usual
ordering.

Example 8 (Kumar et al., 2011a, b): The closed interval [0, 1]<3} is lattice measurable under
usual ordering.

Let X = %, L= {Lebesgue measurable subsets of &} with usual ordering (<) clearly o(L.) is a
lattice o-algebra generated by L. Here, [0, 1] is a member of o(L). Hence, it is a Lattice measurable
set.
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Example 9 (Kumar ef al., 2011a, b): EKvery Borel lattice is a lattice measurable.

Definition 5: The lattice measurable space (X, ) together with a lattice measure p is called a
lattice measure space and it is denoted by (X, 3, 1).

Example 10: Suppose 3 is a set of real numbers p is the lattice Lebesgue measure on % and B 1s
the family of all Lebesgue measurable subsets of real numbers. Then (&, (3, p) is a lattice measure

space.

Example 11: Let 3 be the set of real numbers, [ be the class of all Borel lattices and p be a lattice
Lebesgue measure on . Then (X, B, p) is a lattice measure space.

Definition 6: Let (X, [}, p) be a lattice measure space. If u(X) is finite, then p is called lattice finite
measure,

Example 12: The lattice Lebesgue measure on the closed interval [0, 1]is a lattice finite measure.
Example 13: When a coin is tossed, either head or tail comes when the coin falls. Let us
assume that these are the only possibilities. Let X ={H, T}, H for head and T for tail. Let
G = {p, {H}, {T}, X}. Define the mapping P: B-[0, 1] by P (@ = 0P {HHh =P {TH =%, P X) = 1.
Then P is a lattice fimite measure on the lattice measurable space (X, [3).

Definition 7: If pis a lattice finite measure, then (X, i, p) is called a lattice finite measure space.,

Example 14: Let B be the class of all Lebesgue measurable sets of [0, 1] and p be a lattice Lebesgue
measure on [0, 1]. Then ([0, 1], B, p) 1s a lattice finite measure space.

Definition 8: Let (X, , p) be a lattice measure space. If there exists a sequence of lattices
measurable sets {x } such that (i) _  , and (ii) p(x ) is finite, then p is called a lattice o-finite

Imeasure.

Example 15: The lattice Lebesgue measure on (&, p) is a lattice o-finite measure since:

w o= v (-n, n)

and p(-n,n) = 2n is finite for every n.

Definition 9: If p be a lattice o-finite measure, then (X, [, p) 1s called lattice o-finite measure
space.

Example 16: Let [ be the class of all Lebesgue measurable sets on:

R = v, (-n, n)

n

and p be a lattice measure on . Then (&, [}, ) is a lattice o-finite measure space.
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® X1 ) Y4
Y3
x Y1
W) *)
2-point lattice L. 4-point lattice M

Fig. 1{a-c): (a) 2 point lattice L, (b) 4 point lattice M and (¢) LxM; the Cartesian product of lattices
L and M

Definition 10 (Gabor, 1964): Let X and Y be two lattices. Then their Cartesian product denoted
by XxY is defined as XxY = {(x, y)/xeX, yeY} Itis called product lattice.

Example 17: Let L and M be two lattices shown in the Fig. 1.
Consider LxM in Fig. 1, where, 1 = (x,, y), d=(x,, vy, e =(x, ), F= (%, y2), a =(x,, ¥J),
b=(x,, y), e=(x, y.) and O =(x;, y)).

Definition 11: The lattice measure m defined on SxT is called the product of the lattice measures
p and A and is denoted by puxAa.

Example 18: If p is a lattice measure on R, then m = pxp is a product lattice measure on RxR.

Definition 12: [f A<X and B<Y, then AXB<XXY. Any lattice of the form AxB is called super lattice
in XxY.

Example 19: If AcB and CcD), then (AxC)c(BxD),
Let (x, y) be any element of AxC. Then by definition of product lattice we have xeA, yeC.
But it is given that AcB and CcD.
Therefore xeB and yelD.
That is (x, v) is an element of BxD. Hence, (AXC)c(BxD) is a super lattice in BxD.

Remark 1: Counting measure: Let X be a non-empty set. Let o (L) = F (X).

Define p: 0 (L)~[0, «] by | K| =number of lattice measurable sets in K, if K is finite, «if K is infinite.

Then pis alattice measure on P (X) called the lattice counting measure on X.
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Definition 13 (Pramada. et al., 2011): Let f be a complex lattice measurable function on X. Then
|f] is alattice measurable function from X-[0Q, «]. If:

[Ifl dp < o0

then we say that f is a complex integrable lattice function with respect to p. The set, of all complex
integrable lattice measurable functions with respect to u on X is denoted by L'

Definition 14 (Pramada et al., 2011): Let f = utiv where u and v are real lattice measurable
functions on X. Let fel.!. Then we define:

jfdp = ju* dp—ju’ dp-i—jv+ dp—jv’ dp

E E E E E
for every lattice measurable set E, where, u" = max {u, 0}, u™ = -min {u, 0} and v = max {v, 0},
v~ = -miniv, 0}.

Definition 15 (Kumar et al., 2011a): If K i1s a lattice measurable set and then the characteristic
funection yz(x) is defined as if y5(x) = 1, if xeK =0, if x¢R.

Remark 2: Let (X, 8) (Y, T) be lattice measurable spaces.
Then S1s a lattice o-algebra in X and T 1s a lattice 0-algebrain Y.

Definition 16: If AeS and BeT, then the lattice of the form AxB is called super lattice measurable
set where 35, T are lattice g-algebras on X and Y, respectively.

Example 19: Every member of SxT is a super lattice measurable set.

Definition 17: Let K<XxY where xeX, yeY. We define x-section lattice of K by E_ = {y/ (x, y)ek}
and y-section lattice of K, = {x/(x, y)eli}.

Note 2: kK, <Y and K <X.
Definition 18 (Kumar et al., 2011a): Let f be an extended real valued measurable function on
the lattice of real numbers such that {xeLA{(x)>«} is lattice for each ael.. Then f is lattice measurable

function.

Definition 19 (Kumar et al., 2011a): A function s on a lattice measurable space X whose range
consists of only finitely many points in [0, «]is called a simple lattice measurable function.

Theorem 1 (Pramada et al., 2011): If E¢SxT, then E €T and E e85 for every xeX and yeY.

Theorem 2 (Rudin, 1987) and (Pramada ef al., 2011): Let f: X-[0,«] be a lattice measurable
funetion. Then there exists simple lattice measurable functions s, on X such that.:
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10 Osgsy<sy<a ... <f

ii: s, (x) ~f(x) as n ~efor every xeX

Theorem 3 (Rudin, 1987) and (Pramada et al., 2011): Let {f } be a sequence of lattice
measurable functions on X such that O<f,(x)<fx)...... <o for every xeX and f (x)»f(x) as n-w for

every xeX. Then f is lattice measurable and:

jfn dp—)jf dy as n-e,
X X
Note 3: Let E =[a, b]. Then:

Jau=Jdu=[u], = b-a = ub-a) = p@®

a

CHARACTERIZATION OF LATTICE MEASURABLE FUNCTIONS ON PRODUCT
LATTICES

Definition 20: A lattice measurable function f: XxY-Z7 where z 1s a topological space. For each xeX,
we define f: Y-Z by { (y) ={(x, ¥). Then {_is called Y-lattice measurable function. For each yeY, we
define f, : X-Z by f,(x) =f(x, y). Then {, is called X-lattice measurable function.

Theorem 4: Let f be an (SxT) lattice measurable function on XxY, The:

(1) For each xeX, f 1s a T-lattice measurable function

(2 For each yeY, f is a S-lattice measurable function

Proof: Let V be an open set in Z. Let Q = {(x, v) eXxY: f(x, v)eV}
Since f1s SXT lattice measurable, QeSxT.

Q= {y: (e y)eQ} = {y: fixy)eVi = {y: £, (v)eV}

By theorem 1, Q€T. Therefore f, is a T-lattice measurable function.

A similar argument shows that f, is an S-lattice measurable function.

Theorem 3: Let (X, S, p) and (Y, T, &) be a lattice o-finite measure spaces. Let fbe an (SxT)-lattice

measurable function on product lattice XxY. Then the following conditions are hold good:

1: If O<f<» and if"

Ox) = [fdh V) = [fduxeXyeY)

then @ 1s S-lattice measurable. ¥ 1s T-lattice measurable and:
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[@du = [ fd(pxn) = [wdn
X XY T

2. Iffis complex and if;

') = [ [f] dn

and
jtb*dp < a0
X

then feL'(uxA).

3. If fel.*(ux4) then felL}(A) for almost all xeX, f el.'(n) for almost all yeY; the functions ® and ¥
defined by:

Ox) = [fdr e = [fdu

almost every where, are in L) and L'(A), respectively and:

f@du = [wdr = | fd(px)

KXY

Proof: By theorem 4, we get {, is a T-lattice measurable function for each xeX and f, is an S-lattice
measurable function for each yeY. Hence the definitions of ® and ¥ make sense.

Part (a): Let QeSxT. Let £ =¢,
Then:

D) = (ko) dh = [ dh = MQ)

T
Similarly:

)= [ (o), dn = [re,du=n (1)

Therefore, by theorem 4.

[ dp=[Fdr=pxi)@= [ xqdxn)

Xz¥
Hence, we get {(a) for characteristic functions.
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Let fbe a non-negative (S x T) simple lattice measurable function.

Then:
f=Ylong =0 f = Fox,. f,= Yoy,
i=1 i=1 i=1
cp(x)=jfxdx=j Zonleixd?L=ZOtlj Lo, dh =20 AQ )
T ¥ 1=1 =1 ¥ i=1
Let:
D,(x) = MQ,5) 1<i<n
Similarly:
Fy) = ZOHP(QW) 1<i=n
1=1
Now:
[@ dp=fw, db= [ %, d(ux2)
b4 v X=¥
Therefore:
Zog_‘.cbi du =Zo¢1_‘.‘{’1 =« '[ Ao, d(uxA)
i=1 b i=1 T i=1 XxT
That is:
j > @, du :j o dno= j Doy, d(pxn)
¥ i=1 v oi=1 Xty i=1
That 1s:

[@du =¥ =] fd(uxn)

X=zY

Hence, (a) holds for all non-negative (SxT)-simple lattice measurable functions S.

Let f be any (5 x T)-lattice measurable function. Then by theorem 2, there exist (S x T)-simple
lattice measurable functions s, on X x Y such that O<s, <s,<... ... <f and s, (%, y) ~f(x, ¥) as n- for
every (¥, ) €X x Y. Let @_be associated with s, in the same way as ® is associated to f. we have:
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j@n dp = jsn d(pxn)

XzY

Now:

O ()= jsnx diands, —f,
T

O<(sp, <t <f

x.

Therefore, if we apply theorem 3, on (Y, T, A) then this shows that.

[0 2 > £, dn
T

T

That is, @ (x) increase to ®(x) for every xeX as n-e.
Again applying theorem 3, to the integrals of (1) we get.

[fdu = [ fd(uxn)

Xzt
By interchanging the role of x and v we get:

[wdr = [ fd(uxa)

Therefore:

[@dy = [wdh = [ fd{px2)

This completes proof of (a).

Part (b): Let f be complex. Then Q< || <ee,
Let:

) = [ |f], dn

iven:
[ dn<oo

Then by using (a) for |f], we get:
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j | d(uxi) = _[GD* du <@

X=zY

therefore, feL'(uxA).
Proof of (¢): First we prove for real feL! (uxAa)
Let fbe in L (uxA) and let f be real. Then 0«<f* < o and Q< <,
Let ®, and @, correspond to f* and f | respectively as ® corresponds to f.
Now fel.! (uxA) and f+< |f]
Since, {(a) holds for {*, we get that:

[@dp= | frd(uxr)< [ [f|d(uwen) < oo (since feLi (uxi))

XzY XxY

Therefore, ® el ().
Similarly, ®.e L' (u).
Now f, = (") -(f"), Also D (X) = J‘f+xd7L shows that " ¢[.'(A) for every x for which both ® (x) and
D (x) <o, ¥
Similarly (f )¢ L'(4).
Therefore f L' () for every x for which both ®, (x) and @,(x) are<e,
Since, @, ®,, el.'(y) we get that ®,(x) and ®,(x) are <=, almost every where.
Hence, f e 1! for almost all xeX.
For such x, we have ® (x) = ®, (x)-®.(x)
Hence, ®e L'(p) using (a) we get.:

f@,du= | £+ duxn)

XzY

f@,du= £ diuxn)

Xy

Therefore:
[@-p)du = | (=17 d (ux)
-4 XzY
That 1s:
jCID duy = j fd{uxi)
-4 X=zY
Similarly, we can prove that.
jq} dr = fd{pxi)
T X=¥

by using f, in place of f, and ¥ in the place of .
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Suppose [is complex and fel.}(uxA).
Let f =u+iv. Then u, vell' (uxA) and u, v are real.
Then applying what we proved above to u, v we get:

j@u dy = _[ ud{pxnr) = j‘Pu da
® XzY T
j@v dp = j v d{pxd) = ILPV dx
X X=z¥ T

where, @ , ®_ corresponds to u, v as ® corresponds to f.

Thus:

[(®,+i®,)du = [ (u+iv) d{uxr) = [(F,+i¥,) dr

b4 Xz¥

That 1s:

j@dp = jfd(pxl) = j‘Pdp

This proves (¢).
Hence the theorem.

Note 4:

fodun = | fd(uxr) = [¥dr

X X=zY

can be written as:

[dueo [foey) dh(y) = [ fd{uxa) = [dr [fixy) du{x)

XzT T

The integrals at. the ends are the so called iterated integrals of 1.
The middle integral is often referred to as a double integral.

Result 1: The two iterated integrals are finite and equal.

Proof: From part (b) and part (c) we get the following useful result.
Let f1s (SxT)-lattice measurable and let:

Jo du = Jdu(x) [ [fey)| daty)=s

X T

Then ®el}(p). Fell(A) that is:
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J.<ID dp <o, jtp dX\ <oo that implies, ICI) dp = J.‘P dA
X ¥ X ¥

Therefore, the two iterated integrals are finite and equal.

Note 5: The order of integration may be reversed for (5xT)-lattice measurable functions f whenever
f=0 or when ever one of the iterated integrals of |f]is finite,

Result 2: For lattice o-finiteness p can not be omitted.

Proof: Let X =[0, 1] =7, p = Lebesgue measure on [0,1], A = lattice counting measure on Y.
Let f(x,y) = 1if x =y, f{x, y) =0 if x+y:

[feydue) = 0

¥

since, for a given v, f (x, v) = 1 when x =y and 0 at all other x. also Lebesgue lattice measure of a
single point is O,
That 1s:

[frydu = [du =0

J.f(&Y) di (x) = J. dA =1 (since A is the lattice counting measure)
¥ {x}

Henece:

| [ eey) dutx) = 0
So

[dr ) [EGxy) dr )= [duG=p[01] =1

Hence:

[ [fexy) dy) = [daw) [fey) du)

To show that fin (5xT)-lattice measurable.

{where, B is the class of all Lebesgue lattice measurable sets in [0, 1] and T consists of all subsets
of [0, 1]).
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Since f (x, y)=1ifx=y, f(x, y)=0if x # y, we see that { = y;, where, D is the diagonal of the
unit square.

Given a positive integer n:

Let Q = xpDV{LxI) V... .....V{L[xI)
Wheren =1,
I,=1[0,1], Q =1, x I, is the unit square.

When:

[o, 1/2], L=[1/2, 1]
QQ [0, 1/2] x [o 1/2] V [1/2, 1] x [1/2, 1]
Q= [0, 1/8] x [0, 1/3] V [1/3, 2/3] x [1/3, 2/3] V [2/3, 1] x [2/3, 1] ete.

Thus, Q, is finite union of super lattice measurable sets and D = AQ,.
Henece, DeSxT,

Therefore, f =y, is SxT-lattice measurable.

Since A is the lattice counting measure, if;

a disjoint union such that A (Yn) < « for all n, then every Y, is a finite set.
Hence, Y 1s countable, a contradiction since Y = [0, 1]
Thus A is not lattice o-finite.
Thus the lattice o-finiteness of A, so p can not be omitted.

Result 3: The condition that f is lattice measurable with respect to S x T can not be dropped.

Proof: Consider X =Y = [0, 1], p = A = Lebesgue lattice measure on [0, 1],
5 =T =class of all Lebesgue lattice measurable setsin [0, 1].

Let us assume the following consequence of continuum hypothesis: there exists a one-to-one
map 0 from [0, 1] onte a well- ordered set W such that 0 (x) has at most countably many
predecessors in W for each xe[0, 1].

Let Q = {(x, y)eXxY: 0(x) precedes 0(y) in W}
For each x€[0, 1] Q, = {y: (x, y)eQ}.
YeQ, if and only if (x, y)eQ if and only if 0(x) precedes 0(y) in W,

Since 6(x) has at most countably many precedessors in W, there will be only countably many
v®in [0, 1] such that 0(y) processes 0(x).

Hence, all but countably many v in [0, 1] are such that 0(x) precedes 8(y) that is, @, contains
all but countably many points of [0, 1].
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For each ye[0, 1] Q, = {x: (x, y)eQ}.
That is, xeQ, if and only if (x, y)eQ if and only if 0(x) precedes 0(y).
But 0(y) has at most countably many predecessors in W,
Hence, @, contains at most countably many points of [0,1].
Let f=y,.
Since Q, and @, are Borel lattice measurable, we get that f, and f, are Borel lattice measurable

and:

@(x):jfxdxzjf(x,y)dyzl

1
w(x) =, du=[f (x,y)dr =Oforall xandy
¥ 0

since for any fixed x, f (%, y) = %, and @, contains all but countably many points:

ijxdle

]

All since yg, contains at most countably many number of points:
1
J.XQY dx=0
0
Hence:

Jax
0

& oy

1 1
fx.y)dy=1=0[dy [f(x y)dx
0 0

In this result. fis not lattice measurable w.r.t. lattice o-algebra 8 x T.
Hence, the condition that fis lattice measurable with respect to 5 x T can not be dropped.

CONCLUSION

This manuscript illustrate the concept of product lattice measurable functions and their various
characterizations. In particular these functions were defined over topological spaces. Also it has
been introduced and advanced the characteristics of S- lattice measurable function and T-lattice
measurable function. The concept of iterated integral of a product lattice measurable function has
been defined and proved that the two iterated integrals of a product lattice measurable function
are finite and equal. The condition that product lattice measurable function is lattice measurable
is obtained and it has been derived that the condition that product lattice measurable function is

lattice measurable cannot be dropped.
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