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ABSTRACT
This study determines all third power-associative (-1, 1) algebras, whose commutator algebras

are generalized Kac-Moody algebras.
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INTRODUCTION
Associated with any algebra Θ over a field of char. … 2 are two algebras denoted by ΘG and Θ+.

There algebras have the same underlying vector space as Θ but are given the products [x, y] = x *
y-y * x and xBy = ½(x * y+y * x), respectively, where * is the multiplication in Θ.

Albert (1948), proposed the problem of classifying all power-associative flexible Lie admissible
algebras, whose commutator algebras are semi simple Lie algebras. Without assuming flexibility,
Benkart (1984) classified all third power-associative Lie admissible algebras whose commutator
algebras are semisimple Lie algebras. Myung (1985) classified all third power-associative Lie
admissible algebras associated with the Virasoro algebra and the Witt albebra. Jeong et al. (1997)
determined all third power-associative Lie admissible algebras whose commentator algebras are
Kac-Moody algebras. In this study, we will determine all third power associative (-1, 1) algebras
whose commutator algebras are simple generalized Kac-Moody algebras. Thedy (1975) collected
information on two natural concepts in a right alternative algebra R, the submodule M generated
by all alternators (x, x, y) and a new nucleus called alternative nucleus. He  also  studied  the 
properties  of  (-1,  1)  rings. Hentzel (1974), characterized the properties of (-1, 1) rings and showed
that all simple (-1, 1) rings are associative. He developed several identities for (-1, 1) rings. Benkart
(1982), classified all power-associative products * that can be defined on the algebra A of n/sup x/n
matrices over a 2, 3-torsion free field F satisfying the condition x*y-y*x = xy-yx for all x, y 0 A and
stated that such product * are automatically Lie-admissible and they are Jordan-admissible too.
Myung (1996) studied the properties of Lie-admissible algebras along with Virasoro algebra and
determined third power associative Lie-admissible algebras whose commutator algebras are
Virasoro algebras. Humphreys (1972), developed the basic general theory of Lie algebras to give
a first insight into basics of the structure theory and representation theory of semisimple Lie
algebras. It is noted that a 2, 3-torsion free right alternative algebra is a (-1, 1) algebra if it satisfies
the identity (x, y, z) + (y, z, x) + (z, x, y) = 0.

MATERIALS AND METHODS
Preliminaries: We begin with some of the basic facts about (-1, 1) algebras. Let (Θ, *) be a
(nonassociative) algebra over the complex field ÷ with multiplication * and let (ΘG, [,]) be its
commutator algebra, where the underlying space is the same as Θ and the bracket operation
[,]:Θ×Θ6Θ is defined by [x, y] = x * y-y * x for all x, y 0 Θ.
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An algebra Θ is called a (-1, 1) algebra if it satisfies the identity:

(x, y, y) = 0 (1)

(x, y, z) + (y, z, x) + (z, x, y) = 0 (2)

where, (x, y, z) = (xy)z - x(yz) denotes the associator of elements x, y and z. Identity (1) is meant to
imply that Θ is right alternative and (2) implies that Θ is Lie-admissible, that is, the commutator
algebra ΘG with a product [x, y] = xy - yx is a Lie algebra.

A ring (Θ, *) is third power-associative, if x * (x * x) = (x * x) * x for x 0 R (3)

For a (-1, 1) ring (Θ, *), the multiplication * can be written as

(4)
1x * y =  [x, y] + x y 
2



Equation 3 is equivalent to

[x, xBy] = 0 (5)

for all x 0 R which can be linearized to

2[x, xBy] + [y, xBx] = 0 (6)

for all x, y 0 R. Again linearizing (6) we obtain

[x, yBz] + [y, zBx] + [z, xBy] = 0 (7)

for all x, y, z 0 R.

The  structure  of  generalized  Kac-Moody  algebras has been considered by many authors 
(Kac, 1990). A generalized Kac-Moody algebra is a Lie algebra that is similar to a Kac-Moody
algebra, except that it is allowed to have imaginary simple roots.

Generalized Kac-Moody algebras are also sometimes called GKM algebras. The best known
example is the monster Lie algebra. Most properties of GKM algebras are straight forward
extensions of the usual properties of Kac-Moody algebras. A GKM algebra has an invariant
symmetric bilinear form such that (ei, fi) = 1. There is a character formula for highest weight
modules, similar to the Weyl-Kac character formula for Kac-Moody algebras except that it has
correction terms for the imaginary simple roots.

A symmetrized Cartan matrix is a (Possibly infinite) square matrix with entries xij such that:

xij = xji

xij#0, if i…j
2xij/xij is an integer if xii>0
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The universal generalized Kac-Moody algebra with given symmetrized cartan matrix is defined
by generator ei, fi and hi and relations:

[ei, fi] = hi if i…j, otherwise
[hi, ej] = xijej, [hi, fj] = -xijfj

[ei, [ei, …, [ei, ej]]] = [fi, [fi, …[fi, fj]]] = 0
for 1-2xij/xii applications of ei or fi if xii>0

[ei, ej] = [fi, fj] = 0 if xij = 0

These differ from the relations of a (symmetrizable) Kac-Moody algebra mainly by allowing the
diagonal entries of a Cartan matrix to the nonpositive. In other words we allow simple roots to be
imaginary, whereas in a Kac-Moody algebra simple roots are always real.

A generalized Kac-Moody algebra is obtained from a universal one by changing the certain
matrix by the operations of killing something in the center or taking a central extension or adding
outer derivations.

 We will use the identities (3), (4), (5), (6) and (7) frequently in determining the third power-
associative (-1, 1) multiplications on generalized Kac-Moody algebras and our approach is based
on the techniques developed by Benkart (1984), Jeong et al. (1997) and Myung (1996).

Let A = (aij)i, j0I be a generalized Cartan matrix where I is the finite index and g = g (A) be the
generalized Kac-Moody algebra associated with A. We will determine all the third power associative
(-1, 1) structures on the generalized Kac-Moody algebra g = g (A). When A is of finite type, this
problem was settled by Benkart (1984). Hence we will assume that the generalized Cartan matrix
is not of finite type.

We start with two technical Lemmas, which support the rest of the results and the proof of
these Lemmas can be found in (1997).

Main section
Lemma 1: The algebra of linear functional on K is an integral domain. In particular, if x 0 N is a
root of g and f: K 6 ÷ is a linear functional on K satisfying f(h)x(hr) + f(hr)x(h) = 0 for all h, hr 0 K
then f = 0.

Lemma 2: Let A = (aij)i, j 0 I be a generalized cartan matrix which is not of finite type. If aij…0 for
some indices i, j 0 I, there exists a root β = ΣxεI ck xk 0 Nof g such that ci>0, cj>0 and ci…cj.

Remark: Lemma 2 holds for all generalized cartan matrices that are not of type An see (1972),
(1990).

Let B be an abelian group, K be the vector space over F. Denote by FB the group algebra of B
over  F.  The  elements  tc,  c 0  B  from  a  basis of this algebra and the multiplication is defined by
tctd = tc + d. We shall write 1 instead of t0. The tensor product M = FB qF K is a free left FB- module.
Denote an arbitrary element of K by d. For the sake of simplicity we write tcδ instead of ccqδ. We
fix a pairing N: K× B 6 F which is F-linear in the first variable and additive in the second one. For
convenience we use the following notations:

N(δ, c) = <δ, c> = δ(c)

for arbitrary δ 0 k and c 0 R.
The following multiplications:
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[tcδ1, t
dδ2]: = tc+d (δ1 (d)δ2-δ2(c)δ1),

for arbitrary c, d 0 R and δ1,δ2 0 K make g into a Lie algebra, called a generalized Kac-Moody
algebra.

Let gc = tc k for x 0 R, in particular go = K then [gc, gd] d gc+d holds for all c, d 0 B. This means
that g is a B-graded Lie algebra. It is clear that [δ, tcδ1] = δ(x)+tcδ1, hence δ is semisimple.
Consequently K is a torus.

Let Bo = {x 0 B/<δ, x> = 0, œ δ0 K} and Ko = {δ 0 K/<δ, x> = 0, œ δ 0 B}. N is  said  nondegenerate 
if Bo = 0 and Ko = 0.

Lemma 3: 

(i) The Cartan sub algebra K is closed under B.
(ii) For each x 0 B/{0}, there exists a linear functional fx: K6C and a by linear map ux: K×K6K such

that:

δBtxδx = fx (δ)txδx+ux(δ, δx) (8)

for all δ 0 K, txδx 0 gx and the fx satisfies:

fx (δ)δr(x)+fx(δr)δ(x) = (δBδr)(x) (9)

for all δ, δr 0 K.

Proof:

(i) By bilinearity and commutativity of B it suffices to show that δBδ 0 K. write:

x
x

x B/{0}
= `+ t



   

It follows from [δ, δBδ] = 0 that

x
x

(x) 0
= `+ t

 

   

for δ1 0 K, write δBδ1 = δrr +δBδ = δ+ By (6) we have
y

y
y B/{0}

t




0 = 2[δ, δBδ1] + [δ1, δBδ] = 2
y x

y 1 x
y B/{0} x B/{0}, (x) 0

(y)t (x)t
   

     

x x
x 1 x

x B/{0}, (x) 0 x B/{0}, (x) 0
2 (x)t (x)t

     

      

Hence, if δ(x) = 0, then δ1(x)txδx = 0 for all δ1 0 K which implies δx = 0. Therefore δBδ = δr 0 T.

(ii) Write δBtxδx = δr + By (6), we have
y 1

y B/{0}

t y




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  1x x y x
x x y x

y B/{0,0}
2[ , t   t , ]  2 (y)t ( ) (x) t 0





                

Hence, we have
1x x y

x x y
y B/{x,0}, (y) 0

t t  t


  

       

Similarly, for δ1 0 K, we have:

1

x x x z
x x z

z B/{x,0}, (z) 0
 t t  t t

  

            

By (7), we have [δ, δ1Bt
xδx] + [δ1, t

xδx δ] + [txδx, δBδ1] = 0 which yields

(10)
1

x z
1 y z

y B/{x,0},(y) 0 z B/{x,0}, (z) 0
(y)t (z)t 0

    

       

By (10), one can easily find that

δBtxδx 0 K + gc

Denote δBtxδx = ux(δ, δx) + txδ(δ, δx) where ux(δ, δx) and δ(δ, δx) 0 K. By:

[δ,δrBtxδx] + [δr, txδx Bδ] + [txδx, δBδr] = 0

We can find:

δ(x)tx δ(δr, δx)+ δr(x)tx δ(δ, δx) = (δBδr)(x)tx δx (11)

Fixing δr 0 K so that δr(x) = 1, we see that if δ(x) = 0, δ(δ, δx) = (δBδr)(x)txδx and 2 δ(δr, δx) = (δrBδr) (x)δx

Define  for all δ 0 Ker x: = {δ 0 K/δ(x) = 0} and .' ' '
x

1f ( ) ( )(x)
2

    x
1f ( ) ( )(x)
2

     
Since, K = Kerx q Fδr, fx is well defined. Then δBtxδx = fx(δ)txδx + ux(δ, δx) since, δ(δ, δx) = fx(δ)δx. It

follows from (13) that (11) is true. It is clear that ux: K× K 6 K is a bilinear map.
From  the  following  Lemma  we  can  see  that  the  linear  functional  fx  are  the  same for all

x 0 B/{0}.

Lemma 4:

(i) For all x, y 0 B/{0}, fx = fy. We denote it by f
(ii) For all δ, δr 0 K, δBδr = f(δr)δ + f(δ)δr

Proof: If dim K = 1, then K = Fδ and for any x 0 B/{0}, δ(x) … 0 since, B0 = 0. Hence for δ1, δ2 0 K,
we have δ1 = δ2 if δ1(x) = δ2(x) for some x 0 B/{0}.

from (9), we have 2fx(δ)δ(x) = (δBδ)(x).
So this means that fx = fy for any y 0 B/{0}.x

1f ( )
2

    
Now we suppose that dim K>1. If Tx … Ty, then K = Tx + Ty and there exists δ1, δ2 0 K such that

δ1(x) = 1, δ1(y) = 0, δ2(x) = 0, δ2(y) = 1 and K = Fδ1 q Fδ2(y) q (Tx Ç Ty). Let δ3 0  Tx 1 Ty. For any δ, δr
0 K, it follows from (9) that
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fx+y(δ)δr(x+y) + fx+y(δr)δ(x+y) = (δBδr)(x+y) = fx(δ)δr(x) + fx(δr)δ(x) + fy(δ)δr(x) + fy(δr)δ(x) (12)

In (12), let δ = δr = δ1 we have fx+y(δ1) = fx(δ1)
Let δ = δ1, δr

 = δ3 we have fx+y(δ3) = fx(δ3).
Similarly, we have fx+y(δ2) = fy(δ2), fx+y(δ3) = fy(δ3)

Let δ = δ1, δr = δ2, we have:

fx(δ1) + fy(δ2) = fx+y(δ1) + fx+y(δ2) = fx(δ2) + fy(δ1) (13)

Now let z = 2x+y in (11) we have

fz(δ)δr(z) + fz(δr)δ(z) = 2fx(δ)δr(x) + 2fx(δr)δ(x) + fy(δ)δr(y) + fy(δr)δ(y) (14)

In (16), let δ = δr = δ1, we have fz(δ1) = fx(δ1)
Similarly we have fz(δ2) = fy(δ2)
Let δ = δ1, δr

 = δ2, we show

fx(δ1) + 2fy(δ2) = 2fx(δ2) + fy(δ1) (15)

From 13 and 15 we know that  fy(δ2) = fx(δ2), fy(δ1) = fx(δ1). Hence, fx = fy. If Tx = Ty, we can choose 
z 0 B/{0} such that Tz…Tx. Then fx = fz = fy. (ii) follows from first part (i) and 9

Lemma 5: For each x 0 B/{0}, there exists a linear functional λx: K 6 F and a symmetric bilinear
map σx: K×K 6 K such that txδ1Bt

xδ2 = λx(δ2) t
xδ1 + λx (δ1) t

xδ2 + σx(δ1, δ2) for all δ1, δ2 0 K

Proof: For x, y 0 B/{0}, by (7) and Lemma 3 and Lemma 4 we have

[δ, txδ1Bt
yδ2 ] = [δB txδ1, t

yδ2]+[δB tyδ2, t
xδ1] = [f(δ)txδ1 + ux (δ, δ2), t

yδ2] +
[f(δ)tyδ2 + uy(δ, δ2), t

xδ1] = ux(δ, δ2)(y)tyδ2 + uy(δ, δ2)(x)txδ1 (16)

For all  d 0 K. It follows that txδ1Bt
yδ2 0 K + gx + gy.

Let x = y, we have txδ1Bt
xδ2 0 K+gx. Then txδ1Bt

xδ2 = txδr+σx(δ1, δ2) for  some  symmetric bilinear
map σx: K×K 6 K and δr 0 K. For any d 0 K, we have [δ, txδr1Bt

xδ2 ] = δ(x)txδr. Using 16 we have δ(x)δr
= ux(δ, δ1)(x)δ2 + ux(δ, δ2)(x)δ1. Fixing δ0 0 K such that

δ0(x) … 0, let λx(δ1) = (x)0
x 1

0

u ( , )
(x)





for all δ1 0 K. It is clear that λx (δ1) does not depend on the choice of δ0 with δ0(x) … 0. So txδ1Bt
yδ2 =

λx(δ1) t
xδ2 + λ2(δ2) t

xδ1 + σx(δ1, δ2). 

Lemma 6:

(i) For any x, y 0 B/{0}, there exists a bilinear sxy: K´ K 6 K such that:
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txδ1Bt
yδ2 = λy(δ2) t

xδ1 + λx(δ1)t
yδ2 + σxy(δ1, δ2) for all δ1, δ2 0 T

(ii) For any δ, δ1 0 K, x 0 B/{0}, δBtxδ1 = f(δ)txδ1 + λx(δ1)δ

Proof: 

(i) Let x, y 0 B/{0} and x … y. For any δ1, δ2 0 K we know that txδ1Bt
yδ2 = txδr1+tyδr2 + σxy(δ1, δ2) for

some δr1, δr2, σxy(δ1,  δ2)  0  K.  It  is  clear  that  σxy  is a bilinear map from K×K to K. For any δ
0 K,   by  [δ,   txδ1Bt

yδ2]   =   δ(x)txδr1  +  δ(y)tyδr2  and  (16)  we have δ(x)δ = uy(δ, δ2)(x)δ1 and
δ(y) = ux(δ, δ1)(y)δ2. Choosing  δ0,  δr  0  K  such  that  δ0(x)  =  1, δrB(y) = 1, we can define λy

x(δ2)
1
2

= uy(δ0, δ2)(x) for all δ2 0 K and λx
y (δ1) = ux(δrB, δ1)(y) for all δ1 0 K. Then txδ1Bt

yδ2 = λx
y(δ2) t

xδ1 +
λx

y(δ1)t
yδ2 + σxy(δ1, δ2). By [δ, txδ1Bt

yδ2] + [txδ1, t
yδ2Bδ] + [tyδ1, δrB t

xδ1] = 0,
we have λx

y(δ2) δ(x)txδ1 + λx
y(δ1) δ(y)tyδ2-uy(δ, δ2)(x)txδ1-ux(δ, δ1)(y)tyδ2 = 0. Hence

λx
y(δ1) δ(y) = ux(δ, δ1)(y) (17)

for all δ1, δ 0 K. Denote λx
x = λx, we have that 17 holds for all y 0 B/{0}

Now we shall prove that λy
x = λz

x for all x, y, z 0 B/{0}.
If Ker y = Ker z, since λx

y(δ1)δ-ux(δ, δ1)) (y) = 0, we know λx
y(δ1)δ - ux(δ, δ1) 0 Ker y = Ker z and

hence (λx
y(δ1)δ-ux(δ, δ1))(z) = 0. Then λx

y(δ1)δ(z) = ux(δ, δ1)(z) = λz
x(δ1)δ(z) for all δ, δ1 0 K . Hence λy

x =
λz

x.
If Ker y … Ker z, we can choose δr, δrr 0 K such that δr(y) = 1, δr(z) = 0, δrr(y) = 0,  δrr (z) = 1. By

(17), we can show

λy
x(δ1)δ(y) +λz

x(δ1)δ(z) = ux(δ, δ1)(y+z) = λx
y+z(δ1)δ(y+z)

Let δ = δr and δrr, we show

λy
x(δ1) = λx

y+z(δ1) = λz
x(δ1)

For all d1 0 K . Hence, we have λy
x = λx

x = λx for all x, y 0 B/{0}.
(ii) For any z 0 B/{0} we have ux(δ, δ1)(z) = λz

x(δ1)δ(z) = λx(δ1)δ(z)
Hence, ux(δ, δ1) = λx(δ1). From Lemma 3 we know (ii) is true.

Lemma 7: For any x, y 0 B/{0}, x … y and δ1, δ2 0 K, we have.

C σx(δ1, δ2) = 0, where σx: K×K 6 K is the symmetric bilinear map defined in Lemma 5
C σxy(δ1, δ2) = 0, where σxy: K×K 6 K is the bilinear map defined in Lemma 6

Proof: Let x 0 B/{0}. From [txδ1, t
xδ1Bt

xδ1] = 0 for all δ1 0 K, we have σx(δ1, δ1)(x) = 0. Since, σx is a
symmetric linear map we have σx(δ1, δ2)(x) = 0 for all δ1, δ2 0 K.

For δ1, δ2 0 K, let y 0 B/{0, x} and δ3 0 K. Since, [tyδ3, t
xδ1Bt

xδ2] = [tyδ3Bt
xδ2, t

xδ1] + [tyδ3Bt
xδ1, t

xδ2],
we  have  σx(δ1,  δ2)(y)  tyδ3  =  σyx(δ3, δ2)(x) txδ1 + σyx(δ3, δ1)(x) txδ2 which implies σx(δ1, δ2)(y) = 0. So
σx(δ1, δ2) 0 K0 = 0. Hence σx(δ1, δ2) = 0 for all δ1, δ2 0 K. Similarly, we can prove (ii).

Now we can give the following main theorem of this paper.
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Theorem 1: If * is a third  power-associative (-1, 1)  multiplication  on  the  simple  generalized 
Kac-Moody algebra g, then there exist a linear functional τ: g 6 ÷ such that

(18)
1u * v =   [u,v] + (u)v+ (v)u
2

 

for all u, v 0 g.
Conversely,  if  *  is  a  multiplication  on g defined by (18), then * is  a  third  power-associative

(-1, 1) multiplication on g

Proof: Define a linear functional τ: g 6 ÷ by:

x x
x x

x B/{0} x B/{0}
( t ) f ( ) ( )

 

         

It is clear that (18) is true.
From (1) we have (x * y) * y = x * (y * y) for all x, y 0 B which is equivalent to [x, y]By = [x, yBy].

Using theorem 1 we can determine all (-1, 1) multiplication on simple generalized Kac-Moody
algebras.
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