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Abstract
Describing the structure of certain special types of elements in a ring (in fact in any algebraic structure) is an interesting problem in
structure theory. This study was performed to carry out some properties of partial isometries and Moore-penrose invertible elements and
the structure of partial isometries and Moore-penrose invertible elements in an involution ring. It is shown that partial isometries in an
involution ring is an ordered groupoid and is a sub-groupoid of the groupoid of Moore-penrose invertible elements in R. 
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INTRODUCTION

In the following we briefly  recall  some  definitions
needed   in  the  sequel  as  reported  by MacLane1 for a
detailed  exposition.  A  partial   binary   operation   on   a   set
E is a  function  from  a  subset  D  of E×E to E, the set D is
called the domain of the partial binary operation. A partial
algebra on a set E is a subset of E on which a partial binary
operation is defined. We shall denote the partial binary
operation on E by juxtaposition and its domain by DE. An
element  u0E  is  an identity if ug = g whenever (u, g)0D and
hu = h whenever, (h, u)0D. Thus, we have the following
definition1,2:

Definition 1: A category C is a partial algebra satisfying the
following axioms:

C The composite (xy)z  is defined if and only if the
composite x(yz)  is defined. When either is defined they
are equal. The common value of the triple composite is
denoted by xyz

C If the composite xy and yz are defined then the triple
composite xyz is defined; xyz = (xy)z

C For all x0C, there exists identities e, f0C such that; xe and
fx are defined 

Clearly, the identities e and f are uniquely determined by
x, we write e = d(x) and f = r(x), where, d(x) is the domain
identity and r(x) is the range identity. Observe that xy is
defined if and only if d(x) = r(y).

Definition 2: A category C is said to be a groupoid if for each
x0C  there  is  an  element  xG1  such  that;  xG1  x  =  d(x) and
xxG1 = r(x).

Groupoid   generalizes  the  notion  of group, all groups
are    groupoid  with  only  one  vertex. A groupoid can  be
seen as a group with partial binary operation replacing the
binary operation (2010 Mathematics subject classification
06F25).

Definition 3: Let (G,·) be a groupoid and let < be a partial
order defined on G. Then (G,·,<) is an ordered groupoid if the
following axioms hold: 

C x<y implies xG1<yG1 for all x, y0G
C For all x, y, u, v0G if x<y and u<v, xu and yv are defined

then xu<yv

C Let x0G and e be an identity such that e<d(x).Then there
exists a unique element (x|e), called the restriction of x to
e, such that (x|e)<x and d(x|e) = e

C Let  x0G  and  let  e  be  an  identity  such  that e<r(x).
Then   there   exists   a   unique   element   (e|x),   called
the   co-restriction  of  x  to  e,  such  that  (e|x)<x  and
r(e|x) = e

A ring R is an additive abelian group together with an
associative multiplication such that; the multiplication
distributes over addition in R.A ring R is called an involution
ring. If R is a ring with an operation *called involution such
that  it  satisfies   the  conditions  (a*)* = a (a+b)* = a*+b*,
(ab)* = b*a*. An element "0R is called a symmetric element if
a* = a. Let R be an involution ring with unity 1, then by Rsym,
Rproj we denote the set of all symmetric and projections
(simultaneously symmetric and idempotent elements),
respectively. It is easy to observe that if e is an idempotent
then e* is also idempotent.

Partial isometries in an involution ring: Let R be an
involution ring. A partial isometry in an involution ring is an
element r such that r = rr* r, where r* is the image of r under
involution and we pronounce it as r star. We denote the set of
all partial isometries of an involution ring R by PI(R). A
projection  in  an  involution  ring  is  an  element  e such that
e2 = e and e* = e. Every projection is a partial isometry, since
ee* e = e.

Lemma 1: Let R be an involution ring:

C r be a partial isometry in R, then r*r and rr* are projections 
C e and  f  be  projections  in  R,  then  e  =  ef if  and  only if

e = fe3,4

Next, we define a relation < on PI(R) by: 

r<t]r = rr* t and rr* = rr* tt*

Clearly, < is a partial order on PI(R). For r, t0PI(R), we define
r·t by:

rt if r * r ss *
r·t

Undefined otherwise
 



It is easy to see that · is a partial binary operation on PI(R).
For r, t0PI(R) with rt is defined then:

2



Asian J. Algebra, 13 (1): 1-5, 2020

rt(rt)* rt = rt (t* r*) rt = r (tt*) (r* r) t = r (tt* t) = rt

Thus, rt0PI (R).

Theorem 1: Let R be an involution ring. Then, the (PI(R), <) is
an ordered groupoid4.

Example 1: Consider M2  the ring of all 2×2 matrices over( )
the ring M2  is an involution ring with * as transpose. An( ) ( )
element A0M2  is said to be a partial isometry if A = AA*A.( )
Let A0M2  be a projection then:( )

A2 = A and AT = Consider the projection

a b
A b c a, b, c

 
 

  
 
 



2 2

2 2 2

a b ab bc a b
A A ab bc b c b d

    
   

       
   

  

solving the  matrix  equation  we obtain projections on  M2 ( )
are:

0 0 0 0 1 0 1 0
0 0 , 0 1 , 0 0 , 0 1
       
       
       
       
       

Let, A0M2  be a unitary matrix, that is, AA* = A*A = I:( )
Let:

a b
A c d , be an unitary matrix

 
 

  
 
 

and:

2 2

2 2

a b ac bd 1 0
AA * I ac bd b d 0 0

    
   

       
   

  

On  solving  we obtain all possible unitary matrices in
A0M2  as follows: ( )

1 0
0 1

1 0 0 1 1 0 0 1
0 1 , 1 0 0 1 , 1 0 ,

1 0
0 1

0 1
1 0

 
 
 
 
 
                           
        
       

   
 
 
 

 
 
 
 
 

Since, a matrix is a partial isometry if and only if it is of the
form A = UP where, U is a unitary matrix and P is a projection
we have partial isometries in M2  as follows:( )

2

1 0 1 0 1 0 1 0
, , ,

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1
, , ,

1 0 1 0 1 0 1 0
PI(M ( ))

0 0 0 0 1 0 0 0
, , ,

0 0 0 1 0 0 0 1

0 0 0 1 0
, ,

1 0 0 0 0

        
                      

        
                      
       
              
       

   
         

 0 1
0 0

1 1 0
,

1 0 0






        

 
                 

Now, it is easy to see that PI (M2 (Z)) is an ordered
groupoid. 

Moore-penrose invertible elements in an involution ring:
Let R be an involution ring. An element a0R is Moore-penrose
invertible, if there exists b0R such that the following hold: 

aba = a, bab = b, (ab)* = ab, (ba)* = ba (1)

Any b satisfies the above condition is called a
Moore-penrose inverse of a. Note that there is at most one b
such that above conditions hold and such a b is denoted by a†

and we call it as a dagger. The set of all Moore-penrose
invertible elements of  R  will  be denoted by R† and call it as
R dagger.  If a is invertible, then a† coincides with the inverse
of a.

Moore-penrose inverse is unique when it exists, suppose
x and y be Moore-penrose inverses of a, then:

xax = x, axa = a, (xa)* = xa; (ax)* = ax

yay = y, aya = a, (ya)* = ya; (ay)* = ay

3
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Now:

ax = (aya)x = (ay)* (ax)* = y* (a* x* a*) = y* a* = (ay)* = ay

Similarly, we can show that xa = ya, Thus:

x = xax = yax = yay = y5

Lemma 2: An element r in an involution ring R is a partial
isometry  if  and  only  if it admits Moore-penrose inverse and
r† = r*. 

Proof: Suppose r0R is a partial isometry then:

r = rr* r and r* = r* rr*

so, r* r and rr* are projections hence, r* satisfies all the
conditions  of  Moore-penrose  inverse given in the Eq. 1 and
r† = r*. Conversely assume that r is Moore-penrose invertible
and r† = r*, then:

r = rr* r and r* = r* rr*

and r* r,rr* are symmetric. Hence, r is a partial isometry.

Lemma 3: Let, R be an involution ring and r0R is
Moore-penrose invertible then rr†  and r† r are projections.

Proof: Given that r is Moore-penrose invertible then:

r = rr† r r† = r† rr†

rr†  and r† r0Rsym

Now, it is enough to show that  rr† and r†r are
idempotents. For: 

(rr† )2 = (rr†) (rr†) = (rr† r)r† = rr†

(r† r)2 = (r† r) (r† r) = (r† r)r† = r† r

Let, R† denote the set of all elements in R which have
Moore-penrose inverses. Define * on R† by, for r, t0(R)†:

(2)
† †rt if r r ttr * t

Undefined otherwise
  


Clearly * is a partial binary operation on R†, for r, t0R†

such that the product r*t is defined, then r*t = rt and r† r = tt†.
So, r*t is Moore-penrose invertible and its Moore-penrose
inverse is given by:

(r*t)† = (rt)† = t† r†

(rt)t† r† (rt) = r(tt†) (r† r) t = (rr† r) t = rt

(t† r†) (rt) (t† r†) = t† (r† r) (tt†) r† = t† (r† rr†) = t† r†

(rt) (rt)† = rtt† r† = r(r† r)r† = rr†0Rsym

(rt)† (rt)(rt)† = t† r† (rt) = t† t0Rsym

Theorem 2: Let, R be an involution ring. Then (R†,*) is a
groupoid.

Proof: Suppose that (r*t)*u is defined, then:

r† r = tt†  and (rt)† (rt) = uu†

i.e., t† r† rt = uu†, but r† r = tt† and so t†t = uu†. Hence, (t*u)
is defined. 

Now:

tu(tu)† = t(uu†)t† = tt† = r† r

Thus, r*(t*u) is defined and: 

(r*t)*u = r*(t*u)

Similarly, the converse follows. 
Suppose, that r*t and t*u are defined, then: 

r† r = tt†  and t† t = uu†

so: 

tu(tu)† = t(uu†)t† = t(t† t)t† = tt† = rr†

thus, s*(t*u) is defined.
Let, e be a projection and suppose that r*e is defined,

then:

r† r = e

and:

r*e = rr† r = r

Similarly, if e*s is defined then e*s = s. 
Let, e be  an  identity  and  the product e*(e†*e) is

defined, then e*(e† e) = e, thus e = e† e and e† e is a
projection. 

Observe that r = (rr†) r = r (r† r), so it follows that R† is a
groupoid where rG1 = r†.
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Theorem 3: The  ordered groupoid of partial isometries PI(R)
in an involution ring R is a sub-groupoid of the groupoid of
Moore-penrose invertible elements in R.

Proof: From Lemma 2 partial isometries are Moore-penrose
invertible, hence:

PI(R) d R†

To prove that (PI(R),·, <) is a sub-groupoid of (R†, *) it is
enough to show that · is the restriction of * to the set of partial
isometries. For, let r,t0PI(R) then r† = r*  and t† = t*:

rt if r * r tt *
r * t

Undefined otherwise
 



r*t = r·t for all r,t0PI (R)

Thus,  ordered  groupoid  of   partial   isometries   is   a
sub-groupoid of groupoid of Moore-penrose invertible
elements.

CONCLUSION

This  is  an  attempt  to  extend the groupoid techniques
in  the  study  of  structure  of  semigroups  to  the  study  of
the structure  of  rings.  Here,  it  is shown  that  Moore-penrose

invertible elements in an involution ring is  a  groupoid and
the ordered groupoid of partial isometries is sub-groupoid of
thi groupoid of Moore-penrose invertible elements. Also, this
study provide an example of ordered groupoid of partial
ismetries in the involution ring M2 (Z) of all 2×2 matrices of
integer entries.

SIGNIFICANCE STATEMENT

This study discovered that set of all Moore-penrose
elements in an involution ring forms a groupoid and the
ordered groupoid of prtial isometries is sub-groupoid of this
gropouid which is beneficial for the study of structure of
involution rings.

REFERENCES

1. MacLane, S., 1971. Categories for Working Mathematician.
Springer-Verlag, New York, Berlin, Heidelberg.

2. Schubert, H., 1972. Categories. Springer-Verlag, Berlin,
Heidelberg, New York.

3. Halmos, P.R. and J.E. McLaughlin, 1963. Partial  isometries.
Pac. J. Math., 13: 585-596.

4. Lawson, M.V., 1998. Inverse Semigroups: The Theory of Partial
Symmetries. World Scientific Publishing Co. Pte. Ltd.,
Singapore.

5. Koliha,  J.J.,  2001.  Range  projections  of   idempotents   in
C*-algebras. Demonstratio Math., 34: 91-104.

5


	aja.pdf
	Page 1




