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Abstract: The aim of this study is to discuss the properties of squares of a pure diagonal
bilinear (PDBL) time series model and how these properties can be used to distinguish
between a linear (ARMA) model and a non-linear (bilinear) model. We showed that for the
Pure diagonal bilinear process,the square of the series have the same covariance structure as
an ARMA process. Simulated data was used to illustrate the results obtained in this study.
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INTRODUCTION

Acc ording to Granger and Andersen (1978) bilinear models are formed by adding a
bilinear form to the autoregressive/moving average (ARMA) models leading to

m k
Xt"!‘ia_‘Xt—_‘:e«+ic;et—1+zzbijet—1Xt—l (1)
j=1 i=1

=1 j=1

where {e} is a sequence of iid random variables with zero mean and finite variance o ande,
is independent of X, s<t. The formal difference between a bilinear time series model and an ARMA
model is the bilinear term eX.

Bilinear models were first studied in the context of non-linear control systems, but their
application as time series model were investigated principally by Granger and Andersen (1978) and
Subba Rao (1981). Following Subba Rao (1981) we represent (1) as BL (p, q. m, k) where BL is
abbreviation for bilinear. Subba Rao ef al. (1984) also gives a comprehensive account of this class of
models. Sessay and Subba Rao (1988, 1991), Akamanan ef af. (1986), Gabr (1988), Subba Rao and
Silva (1993) and many other authors have examined various simple forms of (1) in the context of
stationarity, invertibility and estimation.

The motivation for using data values to detect non-linearity is provided by a result inherent in
the work of Granger and Newbold (1976). They showed that for a series {X,} which is normal {and
therefore linear)

0, (X%) = [oX]*
where o, () denotes the lag k autocorrelation. Any departures from this result presumably would

indicate a degree of non linearity, a fact pointed out by Granger and Andersen {1978).
Granger and Andersen (1978), have also shown that for single term bilinear time series {3}

satisfying

Xt = bX-l et-k+ et

43



Asian J. Math. Stat., I (1): 43-49, 2008

X7} has the same covariance structure as an ARMA (1,k) process.
We show below that for the pure diagonal bilinear process {Xf}
would have the same covariance structure as an ARMA (p,p) process.

Properties of Squares of PDBL Model

Now consider the pure diagonal bilinear model satisfying

P
X, =>b X, e te (2

i=1

where {g,} is a sequence of ii.d random variables with zero mean and constant variance 52 .
=

Let W,= th

P
P 2 )4 P
Xf - ZbJZXt—j e +2Y > bbXeje Xee i+ ZZ biXi - jer- Jet+ef 3
j=1 2]
j=1

We are going to consider three cases namely: k<p, k = p and k>p where k is the lag of the
autocovariance coefficient.

Case 1: k<p
It can be shown that

p-l 2 2 5 2 2-1 2

E(X X, )=b, EX( &) 2. b BX,y du X OH2D b bEX] e X, e, )
i=1 ks
1=k

+23 bbE(Xe)+ 2> DTbbEX,,, e, X, 0., X+ BXD) @

1k i) 1=k
j=k

But, the autocovariance function of a stationary process {X,} is given by

Rk) = E({r) (K -1) = (XX, -p?. Therefore,
R (k) =E (W.W.) -1y

where R (k) is the autocovariance function of W, =X at lag k and p,, = E(X,"). Therefore,
R, (0=ECCNE, )2 ©)

Case2: k=p
It can casily be shown that:

E(X{ & )=¢’ E(X{ )+126" E(X} )

and
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E(X{ e,)=3¢" E(X{ )

Therefore,

p-1 p-1 p-1
E(X/X],,) =bo’B(XN +12b,6 E(X]) + X ble E(XIX],, )+ 2> ble*E(X])+ 6> bbo’

t+p

1=1 1=1 1=1 (6)
p-1 p-1
E(X+ 22 Zblbjc“E(Xf) +a’E(XD)
17 ]
Substituting for E(Xfow) in (4) and simplifying we obtain
p-1 p-1
2.2 . -4} 2
Ru(k) = Z;b] G*R,(p—j)+26 [2Zbibp + 5bijW (M
= =
Observe that this is a Yule-Walker type difference equation.
Case 3: k>p
In this case, it can easily be shown that
)4 )4 )4 )4
ECCXE )= Y bieEGUX], )+ 26" E(XD Y b7+ 2> Y bb 6 *E(X]) + 6’E(X]) (8)
j=1 =1 1L ]
Substituting for in E(XEX2,,) (4) and simplifying, we obtain
)4
R,(k)=Yb6'R (k- k=p+l )

f

This 1s the Yule-Walker equation for an ARMA (P,P) model. Present study on squares of X,
satisfying (1) leads to the following theorem needed for identification purposes.

Theorem 1
Let {e,} be a sequence of independent and identically distributed random variables with E(e,) =

E(e!)=c" <o, Suppose there exists a stationary and invertible process {X,} satisfying
)4
X, =>bX -e. +e,
1=l

for same constants by.b,,... b, p>0. Then th will be an ARMA (P,P) model.
COMPARISON WITH A LINEAR MODEL

Here it is shown that if {3} is MA (P), then { Xi} is also MA (P). We proceed as follows:-
For the MA (P) model
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Then

P P P P
X =3 b? er; 725 Y bbege, 23 bie, e te)
j i< i j=1
It is easy to show that the following are true:
P
E(X{e;)=0"| 3+ > b;
i=1
P
E(X))=c"|1+ > b]

1=1
and

p-l op-l

P P
ER 2 w2 2 2 2 2 g
X trk 2 b] Xt et+k-_| + 222 blbj X t et“'k-] Sk + 22 bj Xt eﬁk—j Crik + Xt Sk
=1

1< =1

X

We proceed to treat the autocovariance as follows

CASE 1: k<p
For k<p, it can be shown that

p-1 P p-1
XX, T Xiel+ 3 b X e +2D) bb Xlehy +23bb X ee

k1
=1, 1=k kg =

P P
2 2 i,2 2
22 Z b1b_|Xt et+ k*]et+k71 + 2kat etet+k + Xt et+k
14 ixk
j=k

Taking expectation, we have

)4

E(X] X,.) = b E(x! e?) S E(XIH 143D,
=L
1=k

Substituting in Eq. 5, we have that

p-1

R, (k)= bIECX2)) + CECXD) 1+ 302 |- [6°(1+ 3000
=1
pes

CASE 2: k>p

We recall that
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p-1 p-1

p-1 P
2 2 2 2.2 2 2 2 2
(XtXt+k) = 2 :bj Xt et+k—1+2z : 2 :banX et+k—Jet+k—1 +2z :bJXter—Jer +Xt eH_k
iz ]

= i=1

and
p-1 p-l1

P P
E(XX )= 2 b E(Xle,,, )+ 23, FIbbEXe e, )+23 bEXe ce)
1=1 12 ]

1=1

+0’E(X)

= Gzzp:bJ?E(Xf)+ o'E(X}) = GZE(XE){H Zp:ij

=1 i=1

Thus
Rw(k)—GZEO(f){HZP:bf}—{GZ[Hibe ~0

Hence th is alsoan MA (P).
SIMULATION RESULTS

Here we present some simulation to illustrate the results obtained in this study. In what follows,
the random variable {e,} are mutually independent and identically distributed as N(0,0%). The
processes considered are:

X =07X 8, + g (10)
Y, =0.7+ e+ 0.146¢, (1)
The simulation and estimation were done using MINITAB. For purposes of illustration, we have
without loss of generality taken o = 1 for (10} and (11). We generated for each process 200
observations (X, X,,... X,4). The autocorrelation for X,,,v, and were estimated.
The estimator

r,=R{KYR0), k=1273,...
was used to estimate the autocorrelation, where

N _ _
R(K)= ﬁz‘(xt X)X, - X)LK=012,..

t=1

is the estimate of the autocovariance R(k) and
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Table 1: Showing Estimated Autocorrelation for X, X%, v, and v4

Moaodel (10) Model (11)

Lagk X X ¥t vt

1 -0.19 0.50 0.51 0.37
2 0.17 0.28 0.11 0.07
3 -0.02 0.02 0.13 -0.00
4 0.01 -0.04 0.03 -0.07
5 0.03 -0.05 0.05 -0.04
6 -0.04 0.02 0.21 0.13
7 0.15 -0.02 0.19 0.02
8 -0.02 -0.01 0.08 -0.01
9 0.02 -0.06 0.05 -0.04
10 0.03 -0.06 0.03 -0.08

is the estimate of the mean. As these estimators have been discussed in detail by Chatfield (1980) they
have just been stated here. The parameters have been carefully chosen to ensure the invertibility and
stationarity of the processes. Table 1 gives the estimated autocorrelation of the models (10) and (11)
and their squares.

X, is seen to identify as an MA (1) under covariance analysis and at least as ARIMA (1,1) as
the theory predicted. Both y, and would identify as no more than MA (1). Therefore, looking at the
square of a series is a useful way of distinguishing between a linear and a bilinear model having the
same covariance analysis properties.

DISCUSSION AND CONCLUSION

One way of distinguishing between linear and non-linear models is to perform a second-order
analvsis on the squares of the series. Some authors have shown that for a series {3} which is normal
(and therefore linear)

¢, (X1)=[c, (X,)]2 (12)

where o, () denotes the lag k autocorrelation. Any departures from this result presumably would
indicate a degree of non-linearity, a fact pointed out by Granger and Andersen (1978).

We have, however, shown in this paper that this result (12) does not hold for the pure diagonal
bilinear model. We have shown that the covariance structure of the square of a moving sequence time
series is the same as the covariance structure of the original series. And this result can be used to
distinguish between a pure diagonal and a linear model.
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