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Abstract: This study improves on the Additive Fourier Series and traditional model of
discrete periodic time series. It seeks to formulate a mixed (multiplicative-additive) Fourier
Series model which decomposes a time series into multiplicative trend, seasonal components
and additive error component together with additive trend. It is discovered that for time
series with strongly marked and obviously fluctuating seasonal effects a multiplicative-
additive (mixed) Fourier series model is suitable. The relevance of the new model is shown
by analyzing the rainfall data of Uyo metropolis with the use of the model. The resulting
model gives Y,=210.1 (1-0.984 cos wt) which fits well to the original data and can be used
in forecasting future values of the rainfall data.
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INTRODUCTION

Most periodic time series have been assumed to be modeled by the use of additive Fourier Series
model or any other seasonal models, but not much have been done on the modeling of a special case
of such time series with a strongly marked and obviously fluctuating seasonal effects. The researcher
discovered that for such time series a pseudo-additive (mixed) Fourier series model is very suitable.
The development is as a result of the work of Hernmann ez ef. (2006}, who demonstrated that a series
with sharply pronounced seasonal fluctuations and trend-cycles movement, which is extremely
weather-dependent could be modeled suitably using a multiplicative-additive (Mixed) model given by
Y,=D(C, + 8 + L). The further said that this can be implemented in X-12-ARIMA. In a similar
development, Findley ef a. (1998) earlier suggested a Pseudo-additive decomposition with a relative
working day factor (D) as Y, = C.D, (S#+ 1,"), which made it possible to estimate relative calendar
factors based on a loganithmic REGARIMA model. Traditionally, time series are decomposed into four
basic components: the frend, seasonal, cyclical and irregular components. Nkpodot and Usoro (2005)
stated three traditional models of time series as completely additive, completely multiplicative and
mixed models. They outlined the models mathematically as:

. Y, = C, +8,+ I,-completely additive modsl
. Y, = C, 8.I,-completely multiplicative model
. Y, = CS,+ I,-Mixed model.

Where:

Y, = Observationat time t

C, = Current mean or trend-cycle effect
S, = Seasonal effect

I, = Residual or random error.
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Also in time series analysis, it is assumed that an unadjusted series (Y) may be decomposed into
four unobservable components. The first of those is the trend c¢ycle component (C), which includes
not just the long-term trend but also cyclical fluctuations. Then comes the calendar component (D),
derived from the effects of working-day variations, for example. There is additionally the seasonal
component {3), which includes annual fluctuations that recur to almost the same degree in the same
period (Anonymous, 2001).

According to Priestly (1981), one of the most important advantages of Fourier Series Analysis
is its simple way of modeling a series with seasonality or eyclicalness. He further said that Fourier
series method can be used to model seasonal effects using several seasonal peaks per year.

Chatfield (1975), stated that a seasonal component of a time series can be decomposed into
underlying sine and cosine functions of different frequencies known as Fourier series. One way of
doing this is to cast the issue as a linear multiple regression problem, where the dependent variable is
the detrended time series and the independent variable are the sine and cosine functions of all possible
(discrete) frequencies (Priestly, 1981).

Roerink ef &f. (2000) used Fourier Series Analysis or Harmanic Analysis of Time Series to screen
and remove cloud affected observations and temporarily interpolate the remaining observations to
reconstruct gapless images at a prescribed time.

METHODS OF ANALYSIS

The analysis of this study is done through the help of a statistical package called MINITAB. The
model is given by:

k
Y, = (a, + byt) >"[a, cosiot + b, siniot]+ (a, + byt) + e, (b

i=1

k
Y, =(a, +but){2[aicosimt+sinicot]+1}+et @

i=1

The estimated model is given by:

S?t =(a, + but){zkz[a1 cosimt + sinimt]+ 1} (3)
1=1
Where
Y, = The observation at time t
b, = The trend parameter estimate
a, = The constant used to set the level of the series
a4, = The parameter estimates.
¢, = Theerror term
w = 2unfn
Where
f = The fourier frequency
k = The highest harmonic
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It is noteworthy here that the highest harmonic, k in Fourier Series Analysis modz] is the number
of observations per season divided by two (2) for an even number of observation and n-1/2 for an odd
number of observations.

Hence; The model given above can be represented traditionally as

Y. =Ty (8, + 1) L =TS+ T,

T =a, + byt is used in estimating the trend, while the expressions containing the sine and cosine
terms gives the estimated model for seasonality. The method used in estimating the parameters of the
model 1s the method of least squares in Multiple Regression Analysis. Firstly the trend is removed
from the series by multiplicative procedure:

Y k . -
t—=""(a, cosiot + b;siniet) + ¢, = DT (5
a,+bt o

Then DT (the detrended series) is then estimated by method of ordinary least squares

k
DT = > (a, cosiot+bsiniet) (6

i=1

A statistical test of significance of the general model and that of the parameter estimates are done
using a computer package known as MINITARB.

It is noted here that if the trend parameter by is not significant {i.e., b, = 0), then the estimated
model becomes.

n k
Y, =a, [Z (a,cosimt+ b, siniet+1 (M)
1=1
DATA ANALYSIS

From the trend analysis,
by =0
a, =210.1
Therefore T =a,=210.1
Also, since
k=6,1=-123,..61=1and w=1/6
Therefore,

d T .
DT =3 (a, 0031gt+ b, sini gt)

i=1

is modeled using in Table 1 and 2:
From Table 1, the estimated model with the significant parameter estimates is;
DT =-0.984 cos w.

)
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Table 1: Results for testing the significance of the detrended series model

Predictor noconstant CoefTicient SD T p

coswt -0.98370 0.13350 -7.37 0.000
sirmwt. -0.21840 0.13350 -1.64 0.105
cos2wt -0.15270 0.13350 -1.14 0.255
sin2wt 0.09850 0.13350 0.74 0.462
cos3wt 0.09670 0.13350 0.72 0.470
sindwt 0.00520 0.13350 0.04 0.969
cosdwt 0.19540 0.13350 1.46 0.146
sindwt 0.01570 0.13350 0.12 0.907
cosSwt -0.13060 0.13350 -0.98 0.330
sinSwt -0.02700 0.13350 -0.20 0.840
cosowt 0.03203 0.09440 0.34 0.735

Table 2: Result for testing the significance of general detrended series model

Source df 58 MS F P
Regression 11 66.961 6.087 5.69 0.000
Error 109 116.567 1.069
Total 120 183.527
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Fig. 1: Plot of actual and estimated values
RESULTS AND DISCUSSION

From the above analysis, the general estimated model is obtained as Y, = 210.1 {-0.984 cos wt+1)
or Y, = 210.1-206.728cosut. The plot of the actual and fitted values of the rainfall data is given in
Fig. 1. The plot indicates a good fit of the model.

It is a known fact that there are many models used in modeling a periodic time series. In
this study, developments are made in the use of Fourier Series model to fit atime series. It
is discovered that a pseudo-additive Fourier series model so developed is quite suitable for the
modeling and forecasting of a time series with strongly marked and obviously fluctuating
seasonal effects. This is shown in Appendix 1 and 2, where the estimated values fit well to the actual
values.
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S. No. Y S. No. Y S. No. Y S. No. Y 5. No. Y
1 6.2 25 6.2 49 8.8 73 53 97 4.8
2 56.0 26 55.0 50 50.9 74 55.0 98 45.0
3 200.4 27 219.0 51 2241 75 2253 99 230.0
4 290.0 28 300.1 52 310.0 76 299.0 100 287.4
5 273.0 29 280.0 53 268.2 77 273.0 101 277.0
6 450.0 30 438.0 54 440.0 78 433.0 102 444.2
7 371.0 31 372.0 55 382.0 79 372.0 103 356.0
8 396.0 32 396.6 56 396.2 80 400.7 104 389.0
9 320.5 33 3233 57 325.0 81 3284 105 3333
10 80.1 34 87.4 58 100.0 82 92.6 106 92.1
11 10.9 35 14.0 59 15.0 83 10.0 107 12.4
12 14.0 36 9.9 60 3.5 84 5.8 108 10.0
13 4.5 37 0.0 61 2.9 85 57 109 0.2
14 60.5 38 45.0 62 53.8 86 57.0 110 41.8
15 221.3 39 222.0 63 225.1 87 222.0 111 216.8
16 299.0 40 297.0 64 2957 88 296.5 112 290.0
17 271.0 41 277.0 65 273.2 89 272.0 113 268.0
18 439.0 42 439.5 66 400.0 20 436.0 114 442.0
19 372.0 43 3721 67 372.0 a1 300.0 115 372.0
20 400.0 44 397.0 63 395.0 92 3889 116 403.0
21 331.0 45 328.0 69 3236 93 3231 117 321.4
22 90.1 46 88.0 70 88.0 94 90.3 118 97.0
23 15.0 47 12.0 71 9.0 95 11.6 119 12.7
24 10.0 48 10.0 72 11.2 96 12.5 120 1.1
Appendix 2: Fitted values (V)
S.Ne. Y, S. No. Y S. No. Y S. No. Y 5. No. Y
1 7.663 25 7.664 49 7.665 73 7.665 97 7.666
2 55.189 26 55.195 50 55.200 74 55.206 98 55.211
3 223.775 27 223.786 51 223.797 75 223.808 99 223.819
4 299.682 28 299.678 52 299.675 76 299.671 100 299.667
5 276.425 29 276.432 53 276.438 77 276.445 101 276.452
6 439.364 30 439.368 54 439.371 78 439.375 102 439.379
7 367.324 31 367.319 55 367.314 79 367.309 103 367.304
8 399.429 32 399.434 56 399.438 80 399.443 104 399.447
9 328.992 33 328979 57 328.967 81 328.954 105 328941
10 94.682 34 94.672 58 94.663 82 94.653 106 94.643
11 15.463 35 15.462 59 15.462 83 15.461 107 15.460
12 12.006 36 12.005 60 12.005 84 12.004 108 12.004
13 7.664 37 7.664 61 7.665 85 7.666 109 7.666
14 55.192 38 55.197 62 55.203 86 55.209 110 55.214
15 223,781 39 223.792 63 223.803 87 223.814 111 223.825
16 299.680 40 299.676 64 299.673 88 299.669 112 299.665
17 276.428 41 276.435 65 276.442 89 276.448 113 276.455
18 439.366 42 439.369 66 439.373 90 439.377 114 439.381
19 367.321 43 367.316 67 367.311 91 367.306 115 367.301
20 399.431 44 399.436 68 399.440 92 399.445 116 399.449
21 328.986 45 328973 69 328.960 93 328.948 117 328935
22 94.677 46 94.667 70 94.658 94 94.648 118 94.439
23 15.463 47 15.462 71 15.461 95 15.461 119 15.460
24 12.006 48 12.005 72 12.005 96 12.004 120 12.008
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