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Abstract: Transformations of the purely multiplicative time series model will either remain
the purely multiplicative model or the additive time series model. These transformations are
required to meet the variant assumptions on either the multiplicative or the additive models
with respect to the seasonal component. When these assumptions are met, a transformation
is regarded as being successful with respect to the seasonal component. This study deals
with the methods required in the determination of intervals for the seasonal indices for
successful transformations. Intervals demved are found to lie in the neighbourhood
of 1.0. Numerical examples are used to illustrate the results obtained.
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INTRODUCTION

The general time series is always considered as a mixture of four components (Kendall and Ord,
1990): (a) A trend, or long-term movement, {(b) A seasonal component, (¢) A cyclical or fluctuations
about the trend of greater or less regularity and (d) A residual, irregular or random effect. If short period
of time are involved, the eyclical component is superimposed into the trend (Chatfield, 1980) and we
obtain a trend-cycle component.

We shall consider two types of model, depending on whether the scasonal effect is additive or
multiplicative. If M, is the smooth component of the series (trend and cyclical effects), S is the
seasonal component and ¢, the error term, we may have

(1)

Y, =M + 5 + ¢ (2)

t

We shall assume that the seasonal effect when it exists has period s, that is, it repeats after s time
periods. In effect:

S.,; =S, foralli and j (3)

is+ §

For the purely multiplicative model (1), we impose the condition

> 8, =5 )

and the invariant assumption for the additive model (2) is
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Table 1: Transformations of the purely multiplicative model

Y * M, * S, * e Model for Y, * Assumption on S, *
log, ¥, log, M, log, S, log_ e, Additive PR
i=1
JT ™, J5 Jeo Multiplicative ; 5=
/Y, 1/M, 1/8, 14, Multiplicative i g *=s
i1
Y2 M2 82 e? Multiplicative T s
=
V[, VL Vs, Ve Multiplicative ;s g
/Y3 /M2 1/82 1/e? Multiplicative 2 5=
o1
38, =0 &)

We shall now concentrate upon the transformations of the purely multiplicative
model (1). Transformation is a mathematical operation that changes the measurement scale of a
variable and is usually done to make a set of variables useable with a particular statistical test
or method. Reasons for transforming data can be found in Dolby (1963), Bond and Fox (2001),
Bland and Altman (1996) and Osborne (2002). Transformations often used in statistical
practice are:

log, Y. Y,. UY, Y2, 1/JY,, UY?

The logarithmic transformation converts the purely multiplicative model (1) to the additive
modzl (2), while the other transformations listed leave the transformed model still multiplicative. For
the logarithmic transformation,

Y* =log ¥ =log M +1og S +loge =M* +3*+¢* {(6)

The result of transformations of model (1) is given in Table 1. In what follows, we will use the
following notations:

Y.* = Transformed trend-cycle component
M* = Transformed seasonal component
g* = Transformed error term

It is clear from Table 1 that only the logarithmic transformation alters the assumption concerning
the seasonal component. Therefore we must be interested in the values the seasonal indices of the
multiplicative model must take to rzalize the assumptions on the seasonal indices of the resultant
additive model of the transformed series. Similarly, the other transformations where there is no change
in model structure must also be investigated to make sure that the transformed seasonal indices add up
to s over a complete period.

If we are interested in seasonal variations, we should take several observations (quarterly,
monthly) per year. In this case the frequency with which data are recorded determines the value
assigned to s (5= 1), the length of the periodic interval. In seasonal time series analysis, as we shall
often find that there are equality of seasonal indices which must help us to aggregate the series over
shorter time periods. In owr investigation of the effect of these transformations on the seasonal
component of the purely multiplicative model, we must not loose sight of the cases where some of the
indices are equal.
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The methods available for analysis of seasonal time series data in the time domain approach
include the descriptive method and the fitting of probability models (Box er af., 1994, Chatfield, 1980).
Traditionally, seasonal effects determination in the descriptive method is not done without some prior
adjustments for the trend. The problem of de-trending a series before computing the estimates of the
seasonal effects can be avoided by use of Buys-Ballot procedure for time series decomposition. Since
computational procedure is not part of this study, details of the Buys-Ballot procedure is given in
Iwueze and Nwogu (2004, 2005) and Twueze and Ohakwe (2004). Our interest is only on the seasonal
indices.

The purpose of this study is to study the effect of transformations on the seasonal component
of the purely multiplicative model with a view to achieving the desired value for the sum of the
seasonal components of the transformed series.

[ZS]*:O or ZSJ.*:SJ

i=1 i=1

We must remember that the common values of s for variation within a year are: s =1 for yvearly data;
s =2 for data collected two times in a year, s = 3 for data collected three times in a year; s = 4 for
quarterly data showing seasonal effects within years; s = 6 for bi-monthly data and s = 12 for monthly
data showing scasonal effects within years.

EQUALITY OF ALL INDICES FOR ALL LENGHTS
OF PERIODIC INTERVAL

This section examines the case where all the seasonal indices are equal and observations have been
taken s times per year. Thatis, =8, j=1,2,..s. Hence,

S=s8-s=8=8 =1 j=12,..s N

Even though observations have been taken s times per year, there will be no seasonal effect since
variation is the same at the length of time between observations or recording frequency. For such series,
itis clear that §* =0, j = 1,2,....s (for the logarithmic fransformation), §* = 1, j = 1,2,...,s (for the
other transformations listed in Table 1) and

> log.1 = 0, for logarithmic transformation
g * - )it (8
i=t Zl = g, other transformations listed in Tablel
j=1

An example of this situation will be illustrated with the data on monthly unemploved (in
thousands) females between ages 16 and 19 in the United States from January 1961 to December 1985,
listed as Series W4 in Wei (1989). As noted by Wei (1989), the series is non-stationary with a marked
linear trend and he fitted the IMA(1,1) model

(1-B)Y, = (1-0.51B)a,
(£0.05)

©)

with 62 = 1397269 and a, is a zero mean white noise process.
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Table 2: Seasonal indices for transformations of the monthly unemployed females (in thousands) between ages 16 and
19 in the United States from January 1961 to Decernber 1985

8/No. Y, log, ¥, NaA /¥, Y2 1Y, Uy}
1 1.00 0.00 1.00 1.00 1.02 1.00 0.92
2 1.01 0.01 1.01 0.99 102 0.99 0.91
3 1.01 0.01 1.00 0.99 102 0.99 0.91
4 1.01 0.01 1.01 0.98 1.01 0.99 0.93
5 1.01 0.01 1.01 0.98 1.02 0.99 0.93
6 0.99 -0.01 0.99 1.01 0.97 1.0l 1.01
7 1.00 0.00 1.00 1.01 1.00 1.00 1.01
8 0.99 -0.01 1.00 1.01 1.00 1.01 1.09
9 1.00 0.01 1.00 1.00 1.00 1.00 1.03
10 1.01 0.01 1.00 0.99 1.0l 1.00 1.03
11 0.99 -0.01 0.99 1.02 0.97 1.0l 112
12 0.98 -0.02 0.99 1.02 0.96 1.01 111
S5 /3 s 12.00 0.00 12.00 12.00 12.00 12.00 12.00
j=1

i=1

Computing the seasonal indices (all computations in this study were performed using MINITAB)
for the original series and the transformed series, we obtain the results shown in Table 2 which helps
to confirm the results of Eq. 8.

WHEN LENGTH OF PERIODIC INTERVAL IS TWO: (s=12)

When s =2, there are only two possibilitics. The firstis when S, = 8, = 1 which was treated. The
otheris when S, # S, and 8, + S,= 2. Results obtained here are applicable to other values of s when
the s indices are partitioned into two equal groups where the basis of classification is equality of
indices Eq. 10.

= 2 8+ 5 = 2
s = 4:28 + 25, = 4
§ = 6:35 + 35, = 6 S8 s, -2 (10)
s = 845 + 48, = 8
s =10: 58 + 58, =10
s =12: 68 + 68, =12

We now determine the values of 8, and S, that will make S,* + §,* = 0 for the logarithmic
transformation and S;* + 8,* = 2 for the other transformations. For want of space, we give an extract
of the computations for the logarithmic transformation in Table 3. We would accept values of S, and
S, for which S;* + S,*= 0 to one number of decimal places. Ifwelet S, =08, and 8,= 0, we
see that 0.78<0,<1.22 and 0.78<0,<1.22. This result can be presented using set notation as
A, ={(06,0,):078<0,£122,0.78<0,<1.22,8,+ 06,=2}. Results for all transformations are sirmlarly
determined and shown in Table 4.

These intervals of Table 4 can geometrically be represented as is shown in Fig. 1. It is clear from
Table 4 that A, > A; > A, > A, = A, o A, Ineffect, square root (V'Y)) transformation gives a wider
interval for a successful transformation, while the inverse of the squares (1/Y ) transformation gives
the smallest interval. As will be noted in all cases considered, the inverse transformation {1/Y,) will
always give an approximate interval to that of the square (Y,”) transformation.

An example of this situation will be illustrated with the 32 consecutive quarters of U.S beer
production, in millions of barrels, from the first quarter of 1975 to the fourth quarter of 1982, listed
as Series W10 in Wei (1989). This series is clearly seasonal with a slight upward trend. Wei (1989),
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Table 3: Values of §; and S, that satisfy S;* +8.*=0 when §; + 8, =2 under the logarithmic transformation

2 2 R
SJ Z S; 2 SJ ‘

S, S, i=1 g * g * j=1 i=1
0.78 1.22 2 -0.2485 0.1989 -0.0496 0.0496
0.79 1.21 2 -0.2357 0.1906 -0.0451 0.0451
0.80 1.20 2 -0.2231 0.1823 -0.0408 0.0408
0.81 1.19 2 -0.2107 0.1740 -0.0368 0.0368
0.82 1.18 2 -0.1985 0.1655 -0.0329 0.0329
0.83 1.17 2 -0.1863 0.1570 -0.0293 0.0293
0.84 1.16 2 -0.1744 0.1484 -0.0259 0.0259
0.85 1.15 2 -0.1625 0.1398 -0.0228 0.0228
0.86 1.14 2 -0.1508 0.1310 -0.0198 0.0198
0.87 1.13 2 -0.1393 0.1222 -0.0170 0.0170
0.88 1.12 2 -0.1278 0.1133 -0.0145 0.0145
0.89 1.11 2 -0.1165 0.1044 -0.0122 0.0122
0.90 1.10 2 -0.1054 0.0953 -0.0101 0.0101
0.91 1.09 2 -0.0943 0.0862 -0.0081 0.0081
0.92 1.08 2 -0.0834 0.0770 -0.0064 0.0064
0.93 1.07 2 -0.0726 0.0677 -0.0049 0.0049
0.94 1.06 2 -0.0619 0.0583 -0.0036 0.0036
0.95 1.05 2 -0.0513 0.0488 -0.0025 0.0025
0.96 1.04 2 -0.0408 0.0392 -0.0016 0.0016
0.97 1.03 2 -0.0305 0.0296 -0.0009 0.0009
0.98 1.02 2 -0.0202 0.0198 -0.0004 0.0004
0.99 1.01 2 -0.0101 0.0100 -0.0001 0.0001
1.00 1.00 2 0.0000 0.0000 0.0000 0.0000
1.01 0.99 2 0.0100 -0.0101 -0.0001 0.0001
1.02 0.98 2 0.0198 -0.0202 -0.0004 0.0004
1.03 0.97 2 0.0296 -0.0305 -0.0009 0.0009
1.04 0.96 2 0.0392 -0.0408 -0.0016 0.0016
1.05 0.95 2 0.0188 -0.0513 -0.0025 0.0025
1.06 0.94 2 0.0583 -0.0619 -0.0036 0.0036
1.07 0.93 2 0.0677 -0.0726 -0.0049 0.0049
1.08 0.92 2 0.0770 -0.0834 -0.0064 0.0064
1.09 0.91 2 0.0862 -0.0943 -0.0081 0.0081
1.10 0.90 2 0.0953 -0.1054 -0.0101 0.0101
1.11 0.89 2 0.1044 -0.1165 -0.0122 0.0122
1.12 0.88 2 0.1133 -0.1278 -0.0145 0.0145
1.13 0.87 2 0.1222 -0.1393 -0.0170 0.0170
1.14 0.86 2 0.1310 -0.1508 -0.0198 0.0198
1.15 0.85 2 0.1398 -0.1625 -0.0228 0.0228
1.16 0.84 2 0.1484 -0.1744 -0.0259 0.0259
1.17 0.83 2 0.1570 -0.1863 -0.0293 0.0293
1.18 0.82 2 0.1655 -0.1985 -0.0329 0.0329
1.19 0.81 2 0.1740 -0.2107 -0.0368 0.0368
1.20 0.80 2 0.1823 -0.2231 -0.0408 0.0408
1.21 0.79 2 0.1906 -0.2357 -0.0451 0.0451
1.22 0.78 2 0.1989 -0.2485 -0.0496 0.0496
Table 4: Intervals for transformations when 6, + 8, =2
Transformations Intervals
log, Y, Ay ={(0,, 89): 0.7820,<1.22, 0.78<0,<1.22, 8, + 0, = 2}
JT Ay = {(8y, 85): 0.57<0,<1.43, 0.57<8,<1.43, 8, + 8, = 2}
1Y, As = {(81, 8,): 0.8520,21.15, 0.85<8,<1.15, 8, + 8, = 2}
2 Ay =1{(8, 8): 0.8520,21.15, 0.85<8,<1.15, 8, + 8, = 2}
J As = {(8y, 85): 0.75<0,<1.25, 0.75<8,<1.25, 8, + 8, = 2}
/Y3 A ={(8,,0):0.910,21.09, 0.910,21.09, 8, + 8, = 2}

ignoring the stochastic trend in the series, used 30 observations of the original series for ARIMA
model construction. Based on the forecasting performance of his models, he settled on the seasonal
ARIMA model.
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Fig. 1. Regions for suceessfil transformations for two distinet values with equal number of same
indices in each partition (0, + 0, =2)

Table 5: Seasonal indices for transformations of the quarterly US beer production data, in millions of barrels, from the
first quarter of 1975 to the fourth quarter of 1982

S/No. T, log, Y, ﬁ 1/Y, Yy ﬁ 1777
1 0.94 -0.06 0.97 1.0 0.88 1.03 110
2 L11 0.11 1.0 0.89 1.23 0.94 0.78
3 1.08 0.08 1.04 0.92 115 0.96 0.83
4 0.87 -0.13 0.93 L14 0.74 L.0o7 1.29
ss 5 4.00 0.00 4.00 4.00 4.00 4.00 4.00
j=1

(1-BYY, = 1.49 + (1-0.87B%a,
(+0.09)  (+£0.16) (11)

with 62 = 239 and a, is a zero mean white noise process.

Seasonal indices for the original series and the transformations of Table 1 are given in Table 5.
Based on one number of decimal place, it is clear that S, =8,=0,=09 and §,=8;=0,=1.1. Here
we see that O, + 0,= 2, meaning that we can obtain the appropriate seasonal indices of the transformed
variables by taking the equivalent transformation of 6, and 6,.

WHEN LENGTH OF PERTIODIC INTERVAL IS THREE: (s =3)

When s = 3, there are only three possibilities. The first is when S, = §,= S,= 1 which was
treated. The next is when the three seasonal indices are partition into two groups at the ratio of 1 : 2.
If we let the group containing only one index to have a value of 0, for its unique index and the group
containing two equal indices to have a value of 0, for each of the equal indices; we obtain 0, # 0, and
0, + 20,= 3. Applications to values of s » 3 are giveninEq. 12.

s = 3 B + 26, = 3

= 6 28, +48, = 6
: ' : =8 + 20, =3 (12)
s= 9:38 +68 = 9

s = 12: 48 + 88, = 12
Determination of 0, and 0, are described earlier and the intervals obtained are givenin Table 6.

Unlike Table 4, these intervals in Table 6 are not symmetrical from the point 1.0 and the minimum and
maximum values of 8, and 0, are not similar. Again, itis clear that B, > B;> B, > B,=B, > B..
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Table 6: Intervals for transformations when 0, + 20, =3

Transformations Intervals

log, Y, B, ={(®,,9,): 0.76<8,<1.26, 0.8726,<1.12, 0, + 20, =3}
JT B, = {(8,,0,): 0.53<8,<1.53, 0.74<0,<1.24, 8, + 20, = 3}
1/Y, By = {(8,,0,): 0.83<8,<1.18, 0.91<0,<1.09, 8, + 20, = 3}
2 B, = {(9,,0,): 0.8328,<1.18, 0.91<0,<1.09, 8, + 20, = 3}
JT Bs={(8,,0,): 0.7328,21.31, 0.8520,<1.14, 8, + 20, =3}
Y2 B:={(8,,8,): 0.90<8,<1.10, 0.9526,<1.05, 8, + 20, =3}

Table 7: Intervals for transformations when 8, + 0, + 0. =3

Transformations Intervals

log, Y, C, = {(9,, 0., 65): 0.7620,1.26, 0.76<0 < 1.26, 0.76<0 <1.26, & |+ 0 ;+ 0 ~ 3}
JT C, = {8, B,, B3): 0.53<0,<1.53, 0.53<0,<1.53, 0.56<0,<1.45, 8, + 0, + 0, = 3}
1/Y, Cy = {(©,, Bs, B3): 0.8320,<1.17, 0.83<0,<1.17, 0.85<0,<1.15, 8, + B, + 0, = 3}
2 C,={(©,, 0, 0) 0.83<0,<1.17, 0.83<0,<1.17, 0.85<0,<1.15, 8, + B, + 0, = 3}
JT Cs = {(8,, 6, 8): 0.7320,21.30, 0.7326,21.30, 0.73<6,21.30, &, + 0, + 6; = 3}
1/Y2 Cy = (0, 0y, 0): 0.9020,<1.10, 0.9020,21.10, 0.9520,<1.06, 8, + 0, + 0, = 3}

Table 8: Seasonal indices for transformations of the miles flown by British airlines for the 96 months January 1963 to
December 1970

S/No. 1 2 3 4 5 6 7 8 9 10 11 12 5 e T, *
=1 j=1
Y, 08 08 10 10 10 12 12 12 12 10 08 08 12.0
Log Y, -02 -02 00 00 00 02 02 02 02 00 -02 -02 0.0
JT 09 09 10 10 10 11 11 11 11 10 09 09 12.0

The last possibility for s =3 is when the seasonal indices are equally partitioned into
three groups. If we let 8, represent the common index of the first group; 6, represent the common
index of the second group; 8, represent the common index of the third group, then 8, # 6, + 6, and
0, + 0, + 0, =3. Applications to values of s > 3 are given in Eq. 13.

s = X 6 + 0, + 0, = 3
§= 6 20 + 20, + 20, = 6
! ? ’ =0 +0,+0,-3 (13)
s= 9 36 + 39, + 36, = 9
s = 120 48 + 46, + 40, =12

Determination of 8,, 8, and 0, are as presented and the intervals obtained are givenin Table 7.
Unlike Table 4, these intervals in Table 7 are not symmetrical from the point 1.0 and the minimum and
maximum values of 8, 8, and 8, are not similar, except for the logarithmic transformation. Again, it
is clear that C, = C; > C, > G, =C, o C,, while for the logarithmic transformation 8, 0, and 0, have
the same intervals.

An example of this situation will be illustrated with the data on the miles flown by British airlines
for the 96 months (Jamary 1963 to December 1970). The plot (not shown) of the series shows a
marked seasonal pattern and a linear trend. Various seasonal ARIMA models were fitted to the original
series and logarithmic transformed series by Kendall and Ord (1990).

Seasonal indices for the original series, logarithmic and square root (other transformations
are meaningless because of the large values of the original series) transformations are given in
Table 8 Based on one mumber of decimal place, it is clear that §,=S,=5,,=5,,=0,=028,
8,=8,=8=8,=0,=1.0 and 8,=8,=5,=58,=0,=1.02. Here we note that 6, + 6, + 0, =3,
meaning that we can obtain the appropriate seasonal indices of the transformed variables by taking the
equivalent transformation of 8,, 8, and 0,. These indices can help to aggregate the data into three
distinct groups of months based on the equality of seasonal indices which is different from the natural
ordering of the months.
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WHEN LENGTH OF PERTODIC INTERVAL IS FOUR: (s =4)

When s = 4, there are only five possibilities. The firstis when S, = S, = 8, = §, = 1 which was
treated. The second is when the four seasonal indices are partition into two groups at the ratio of
2:2 =1:1 which has also been treated earlier.

The third is when the four seasonal indices are partition into two groups at the ratio of 1:3. If
we let the group containing only one index to have a value of 8, for its unique index and the group
containing three equal indices to have a value of 6, for each of the equal indices; we obtain 8, # 6, and
0,+ 3 0,=4. Applications to values of s >4 are given in Eq. 14.

s= 4 6 +36, = 4
S = 8:20 + 60, = 8= 6 + 36, - 4 (14
12: 46, + 80, = 12

w
Il

Determination of 8, and 8, are described earlier and the intervals obtained are given in Table 9. Unlike
Table 4, these intervals in Table 9 are not symmetrical from the point 1.0 and the minimum and
maximum values of 0, and 0, are not similar. Again, itis clear that D, > D, > D, > D;=D, > D,.

The fourth is when the four secasonal indices are partition into three groups at the ratio of
1: 1: 2. If we let the first group containing only one index to have a value of 0, for its unique index, the
second group containing only one index to have a value of 8, for its unique index and the group
containing two equal indices to have a value of 0, for each of the equal indices; we obtain 0, + 0, # 0,
and 0, + 8, + 2 8, =4. Applications to values of s = 4 are givenin Eq. 15.

s= 4 06+ 6, +20,= 4
S= 8 20+20,+46,= 8 '=0 +6, +20,=4 (15)
12:36,+36,+ 66, = 12

w
Il

Determination of 6,, 8, and 0, and the intervals obtained are shown in Table 10. Unlike
Table 4, these intervals in Table 10 are not symmetrical from the point 1.0 and the minimum
and maximum values of ©,, 0, and 0, are not simmlar. Again, itis ¢lear thatE, > E;> E, o E,=E,>
D,.

The last possibility for s = 4 is when the seasonal indices are equally partitioned into four groups.
If we let O, represent the common index of the first group; 0, represent the common index of the
second group; 0, represent the common index of the third group and 8, represent the common index
of the fourth group, then 6, # 6, # 8, 2 0,and 0, + 6, + 0, + 6,=4. Applications to values of sz 4
are given in Eq. 16.

s= 4 B+ 6,+ 6,+ 0, = 4
S= 8:20+420,+20,+20, = 8156 +6,+0,+0,=4 (16)
12:30,+36,+30, +30, = 12

w
Il

Table 9: Intervals for transformations when 0, + 30, =4

Transformations Intervals

log, ¥, Dy ={(0,, 00 0.75<0,<1.28, 0.91<0,<1.08, 0, + 30, =4}
JT Dy ={(8), 6,): 0.520,21.58, 0.8128,<1.16, &, + 36, =4}
1Y, D, ={(8,, 6,): 0.820,21.20, 0.9328,<1.06, &, + 30, =4}
e Dy ={(8), 0,): 0.82<0,<1.20, 0.93<0,<1.06, 8, + 30, =4}
JT Ds={(8), 6,): 0.72<0,21.34, 0.8928,<1.08, &, + 36, =4}
Y} D, ={(8,, 6,): 0.9020,=1.11, 0.9629,<1.03, 8, + 30, =4}
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Table 10: Intervals for transformations when 0; + 0, + 20, =4

Transformations Intervals

log, Y, E ={(®, 9, 8,):0.76£0,<1.26, 0.75<0,<1.28, 0.85<0,;<1.16, 8, + 8, + 20, =4}
JT E»={(8;, 0y, 95): 0.5520,<1.55, 0.52<0,<1.58, 0.69<0,<1.31, 0, + 8, +2 0, =4}
1/Y, E; = {(©,, 8,, 85): 0.85<0,<1.16, 0.82<0,<1.20, 0.90<0,<1.10, 8, + 8, + 20, =4}
2 E.={(8;, 0,, 9:): 0.8526,21.16, 0.820,21.20, 0.90<6,21.10, 6, + &, + 26, =4}
JT Es={(8;, 0,, 94): 0.7526;£1.26, 0.72<0,21.33, 0.83¢0,21.17, 6, + &, + 26, =4}
1772 Es = {(8;, 0y, 95): 0.9528,<1.06, 0.90<0,<1.11, 0.94<0,<1.06, 0, + 8, + 20, =4}

Table 11: Intervals for transformations when 0, + 0, + 8, + 0, =4

Transformations Tntervals

log, Y, F, ={(8,, 84, 0, 84): 0.76<0,<1.26, 0.76<0,<1.26, 0.85<0,<1.14, 0.8528:21.14,
0, +0,+8;+06,=4}

JT F,={(8,, 8,, 6, 8,): 0.52<0,<1.58, 0.58<6,<1.58, 0.7550,21.25, 0.750,51.25,
0,+0,+0,+0,=4}

7Y, Fy = {(0,, 05, 65, 0.): 0.8320,21.20, 0.83=6,<1.20, 0.95<8,21.06, 0.95<0,<1.06,
0, +0,+8;+06,=4}

Y¢ F,={(8,, 8, 05, 84): 0.830,<1.20, 0.83<0,<1.20, 0.95<0,<1.06, 0.9528:<1.06,
0, +0,+8;+06,=4}

ﬁ Fs ={(8,, 8, 0, 84): 0.7320,<1.30, 0.73<0,<1.30, 0.86<0,<1.15, 0.86<8:<1.15,

B+, +0;,+0,=4}
177 F, = {(9,, &, 05, 6,): 0.9020,<1.08, 0.0020,<1.08, (.96x0,x1.05, 0.96<8,<1.05,
B+ 8, +8;+8,=4}

Determination of 0,,0,, 0,and 0, are described carlier and the intervals obtained are given in
Table 11. Unlike Table 4, these intervals in Table 11 are not symmetrical from the point 1.0 and while
the minimum and maximum values of 0, and ©, are similar, those of 8, and 0, are also similar. Again,
itis clear that F, > F; > F, > F;=F, o F,.

For an illustration, we return to the 32 consecutive quarters of US beer production discussed in
Section 3. Based on two number of decimal places, we can regard the four indices as being different
with S, =6, =0.87,8,=0,=0094, 8,=0,=108,8,=08,=1.11and 8, + 8, + 0, + 8, = 4. As
before, to obtain approximate estimates of the seasonal indices of a transformation, we merely take the
equivalent transformation of 0, 0,, 0, and 8,.

CONCLUSION

We have constructed intervals for the seasonal indices of the purely multiplicative time series
model (8, j = 1.,2,....s) required for successful data transformations. By successiul transformation we
mean the ability to obtain the seasonal indices of the transformed series (3, j = 1,2,....s) directly from
those of the original series by merely taking the equivalent transformation of S, j = 1,2,....5. We
investigated this problem for all distinct indices for all s values and for the equality of some indices
when s = 2, 3 and 4. Results obtained are shown to be applicable to given patterns of equality of
indices fors =6,8,9, 10 and 12.

We must bear in mind that for a given data set only one of these transformations will be used.
Reasons for taking transformations differ and selecting the best transformation can be a complex issue.
If you are unsure about the use of a transformation then take the advice contained in the references
listed in this work. Once you have decided on a transformation, the intervals derived in this study for
the seasonal indices of the original series will be of great help in the determination of the seasonal
indices of the transformed series.
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Intervals Intervals Intervals Intervals Intervals Intervals
for = | for > for > for = for = for:
2
f_Y‘ v f_Y, log, Y, /Y, Y, 1Y,

Fig. 2: Rules for successive transformations with respect to the seasonal effects

Finally, we must remember that this study has led us into accepting the following rule for
successive transformation of the purely multiplicative time series model. Intervals of the seasonal
indices of the original series must obey the rule given in Fig. 2.

REFERENCES

Bland, .M. and D.G. Altman, 1996. Statistics Notes: Transforming Data. BMJ, London, 312: 770.

Bond, T.G. and C.M. Fox, 2001. Applying the Rasch Model. In: Fundamental Measurement in the
Human Sciences, Mahwah, N.J. (Ed.). Lawrence, Erlbaun.

Box, GE.P., GM. Jenkin and G.C. Reinsel, 1994. Time Series Analysis: Forecasting and Control.
Prentice Hall, New Jersey.

Chatfield, C., 1980. The Analysis of Time Series: An Introduction. Chapman and Hall, London.

Dolby, I.L., 1963. A quick method for choosing a transformation. Technometrics, 5: 317-325.

Iwueze, 1.8, and E.C. Nwogu, 2004. Buys-Ballot estimates for time series decomposition. Global J.
Math. Sci., 3 (2): 83-98.

Iwueze, 1.8, and J. Ohakwe, 2004. Buys-Ballot estimates when stochastic trend is quadratic. J. Nig.
Ass. Math. Phy., 8: 311-318.

Iwueze, 1.8, and E.C. Nwogu, 2005. Buys-Ballot estimates for exponential and s-shaped curves. . Nig.
Ass. Math. Phy., 9: 357-366.

Kendall, M.G. and J.K. Ord, 1990. Time Series. 3rd Edn. Charles Griffin, London.

Osborne, J., 2002. Notes on the use of data transformations. J. Practic. Assess. Res. Evol., 8 (6):

Wei, WW.S., 1989. Time Series Analysis: Univariate and Multivariate Method. Addisin Wesley,
Califormia.

89



	Asian Journal of Mathematics & Statistics.pdf
	Page 1


