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Abstract: The estimator of the conditional mode obtained by maximizing the Nadaraya
Watson (NW) kemnel estimator of the conditional density function has disadvantages of
producing rather large bias and boundary effects. The aim of this study is to overcome these
disadvantages by proposing a modified estimator of the conditional mode obtained by
maximizing the Reweighed Nadaraya Watson (RNW) kernel estimator of the conditional
density function. The asymptotic normality and consistency of the proposed estimator are
established and its efficiency is examined by two applications for both simulation and real
life data.
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INTRODUCTION

The problem of estimating the mode of a probability density function (pdf) is a matter of both
theoretical and practical interest. Parzen (1962) considered the problem of estimating the mode of a
univariate pdf. Parzen (1962) and Nadaraya (1965) have shown that under regularity conditions the
estimator of the population mode obtained by maximizing a kernel estimator of the pdf is strongly
consistent and asymptotically normally distributed. Samanta (1973) has given multivariate versions
of Parzen’s results. Samanta and Thavaneswaran (1990) considered the problem of estimating the mode
of a conditional pdf and they have shown under regularity conditions that the estimator of the
population conditional mode is strongly consistent and asymptotically normally distributed. Salha and
Ioannides (2004) generalized these results by considering the conditional mode evaluated at distinct
conditional points. Vieu (1996) presented and compared four mode estimation procedures. Recently,
for random design modsls, Ziegler (2002) proposed a kernel estimator of the mode and its asymptotic
normality has been shown by Ziegler (2003). In addition, Ziegler (2004) presented an adaptive kernel
estimator for the mode.

Assume that (X, Y,....,X,, Y,) are 1.1.d. random variables with joint pdf f{x, ¥) and a conditional
pdf f{v[x) of Y, given X, = x. We assume that for each x, f{y[x) is uniformly continuous in y and it
follows that f{y]x) possesses a uniquely conditional mode M(x) defined by:

fMG0) [ x)= max fy]x)

Samanta and Thavaneswaran (1990) considered the problem of estimating the conditional mode
and they use the Nadaraya Watson (NW) estimator of the conditional density function, but this
estimator has disadvantages of producing rather large bias and boundary effects. To overcome these
difficulties. Hall ez af. (1999) proposed the Rewighted Nadaraya Watson (RN'W) estimator as a
weighted version of the NW estimator, which combines the better sides of the Local Linear (L1}
estimators such as bias reduction and no boundary effects to preserve the property of the NW
estimator is always a distribution function.
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. Lett (%) denote the probability like weights with properties that t,(x)20, 2w =1 and
;:i(x)(Xi ~ XK, (- X)) = Ogrhare K(.) is a kemnel function, K,()=1/hK{") and ‘:ﬁzhn>0 is the
bandwidth. The roll of T,(x) is to adjust the NW weights such that the resulting conditional density
estimator resembles that from the LL estimators. The RNW conditional density estimator is defined
as follows:

3 L0, - DKLy - )
flylxy=21—
> 5 60K, (- X)

If K(u) is chosen such that K(u) tends to zero as u tends to +eo, then for every sample sequence
and for each x, f(yx) is a continuous finction of y and tends to zero as y tends to +e.
Consequentially, there is a random variable M, {x), which is called the sample conditional mode, such
that:

£.M, () [x) = max f,(y]|x)
el

In this study, the conditional mode will be estimated using the RN'W estimator of the conditional
pdf and the asymptotic normality of this estimator will be proved and its performance will be
examined by two applications.

CONDITIONS
Consider the following conditions:

Condition 1
The kernel function K(u) is a symmetric and bounded probability density function such that

. The first two derivatives of K(u), (K¥ (), I = 1,2) are functions of bounded variations.

JuK{w) =>0,as|uj—>

* juzK(u)du< ]

Condition 2
The marginal density g(x) is uniformly continuous and is bounded from below by a positive
constant.

Condition 3
The partial derivatives £00(x y)= @YD exist and are bounded for 1< I+j<3.
ax'ay’
Condition 4

The bandwidth satisfying the following:

«  limh =0,

n—ea

. limnh® =« and limnh" =0
n—soo n—»
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MAIN RESULTS

Here, the main two theorems of this study theorem 1 and 2 will be presented and proved. For
proving these theorems, the following lemmas are required.

Lemma 1
Under the conditions 1, 2 and 4 (I) the following is true:

LX) =n"b,(x)(1+0,(1))

‘Where:
| Dk g® G0y

(X, - 0K, (x- X‘)}i and k, = juzK(u)du
g(x)

b,(x) = [1

Poof
The proof of this lemma is a part of the proof of theorem 1 by De Gooijer and Zerom (2003).

n

w5 (KD (v ) - £ sl (9K, (x-X)
9 ()1 () =
3 b (x)K, (x-X)

i=1

Let
m(X, y)=E(h"KY (y-Y,)|%)

n’lzn: (h"KE) (y-Y)-m(X,y)+m(X,y) -t (y|x))b (XK, (x-X)
£ (v} £ () = —= :

Y b (x)K, (x-X;)

i=1

+{l+o,(1)}= {(nh“)_E_lJ1 + LMD+ o, (1)}

Lemma 2
Under the conditions 1, 3 and 4, the following holds:

« L -goBias EEO(y[x) +0,(0%)
. I =gx)+ 0,

Proof
Using Taylor expansion and integration by parts,
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m(X“Y):h"IK(” ny)[f(ylx) (X-X) S ) )+
(x-X) (- XY (5, ( X) Jdy,
*f°‘(y\ h IKl(y )(XX ”(Y\ ay, b R (o= %) (y¥ )8 (¥, e avr

7 =)0y = Y (Y KD (y = v)dv,+ 4= ) 19 (v s
w1 -0 Ky - v)E® v dy,

Dy -v)dy,

Then,

Lo~ [[mXy) -t
= [l-x)e™ YI Jh K (3Y,)dY, b, (x)K
+ [fly-vt ”‘(YJ) K{ (3Y,)dY, (b, (x)K, (x - X )e (X, ))dX,
+lx-x, (y—Y)f“’” (v.Jx)h ! KY (y - ¥ av, (b, (x) K, (x - X, )g(x,)) dx,
Ao % TR (Y R (y - V(b (30K, (x - X, ) g(X,)) Y, 0%,
+7ﬁ(y—Y) 20y, [oh K (y- Y (b, (x)K, (x - X)) g(X,))dY, dX,

= O G () xR - X )% o

i

x) | b, (0K, (x - X g (x, )X,
(x-X,)g(X,)dx

i

w LE0 (y |30 (x-X, Y K, (X, )8 (x, ) dX,
= thg(x )™ (y[x) [u’K(u) du + o, (h?)
Then,
-y kD (v - ) (v]x) K, (x- X,)g(X,)dY, dX,
= 18 (x)[[ (v - Y WK (v - YOI (V) dY,= 1h oK () £ (y - hufx) du

= 1907 [uPK(u) du +o, )
From Eq. 1 and 2, we get:

. 1,=1hg(x) IHZK du{ (y‘ )+f03 (y[x )} ( 2)=g(X)Bias(f§”")(y|X))+0p(h2)
. I= jb, (K (=X )g( IK Mu+ o, (1) =g(x)+0,(1)

This completes the proof of the lemma.
Now.

(e (£ (s1)) - £ (y1x) - Bias(E8 (y)x) + 0, (1)) = (x4, + o, (1)

Since, (nhg) =0, (nh“)% a, (hz) =a,(1).
This implies that:
(n}ﬁ)%( (y|x) (y‘ - B1as( (y\x))) T (x)I+o,(1)

Lemma 3
Under the conditions 1, 3 and 4, the following holds:

(1)

(2)

3)
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T —1 N, £6e,y) [ (KRK®) dudv)

Proof
Let A=hgb (x)K, (x-X). J= n’%z A; . Since, E{g|x) = 0, then E(A) = 0 which implies that
1
(1) =0.

Al=h'e 2bz( K (%X, ) therefore, E(A] )= hE(&/b] (x)K (x-X,))+ o, (1)

K (- Y) -2 KD (- Vm(X,y) + m*(X,3)
h“E(stﬁ( X,))= h”h KO (y- YK, (x - X,)Pf(X,.Y,) dX,dY,

—h? jj( (3, )) £(X,Y,)dX,dY, = [[RKC@YEx - hu,y- hvydudv
= f(x,y)”K(u)K (v)):* dudv + o, (1)

This implies that,

Var(l,) = EA] = f(x,y) [[ K@K @)y dudv + o, (1)

To show that , J ——>N(0, Var(],)) we will use Liapunov's Theorem, (Pranab and Julio Singer,
1993). Tt is sufficient to show that:

S E|A —EA [
Py =y =0

[Z Var(A‘)}

Since, EA, = o,zn: var(a,) =nVar(J,) . Therefore, the following holds:

i=1

n n 1 i fn
ZE‘ A, —EA, B ZE|A1 B ™) +2ZE‘ A, [P+
= i

i=1

{Zn: Var(Aj)}

B [n‘;f"ar(.Ai)]lw2 - [nVarEAi)

]1+5 12

Since,
l+i ki _8
™y TS E|A, [*=n 2]‘]‘\ A PR, Y) X dY, 0, 8511 — 0
i=1

Therefore, p,-c.
This implies that:

Zn:Ai—“>N[O, zn:Var(Ai)J

i=1 i=1

which leads to:

I=n" ZA —)N(O n’lear(A)]

i=1
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Since,
Var(J, )= n"i Var(A,)
P
we get that:
1= n"%ZA‘ BLEN N(o, £oxy) [JR@K® (v))zdudv)
Theorem 1

Under the conditions 1, 3 and 4 the following is true:

(@h*y# [ 29 (y| x) - £ (y | x) - BiasE®” (y | x)) | —4>

N[O, ;(f('x y)) [[ @K @)* du dv}

where;

Bias(E®" (y | x)) = %hz [£89(y [ %)+ FO2(y | ) | [ulK ()

Proof
A combination of lemma 3 and Eq. 3 completes the proof of theorem 1.
Now, using Taylor expansion:

0=V (M, ()] %) =£"P (M(x) [ )+ (M, () - MEDE? (M, ()| x)

This implies that:
Mn(X) -M(x) = f’(]u_z) (M;(X) [x) >
where;
| M (x) — M(x) | < | M, (x) - M{(x)|
Therefore,
= _ _ (o (M) ) @
(b ML 00 =M = 50 60 )
Lemma 4

Under the conditions 1-4, the following holds:
£ED M (x) | %) 22 (M(x) | %)

Proof
Using the same techniques of lemma 4 by Samanta and Thavaneswaran (1990).
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Theorem 2
Under the conditions 1-4, the following is true:

f(x,y)”K(u)K“’ (v))° dudv

(nh“)%(Mn(x) “MEx)—1sN —(nh“)lEBias(ff") (M) | X)), -
[ffﬂ)(x,M(x)]

Proof

The proof of the theorem follows directly by using Eq. 4, lemma 4 and theorem 1.

Note that Bias (f, (M (x)x)+0 if we assume that the second moment of the kernel finction K
vanishes, that is [u’K (wydu = 0, as by Samanta and Thavaneswaran (1990).

Applications

The proposed method of RNW estimator is applied to find the conditional mode of different data
sets. Standardized normal kernel fimction is used and the weights T, (x) are calculated as described by
De Gooijer and Zerom (2003) and Cai (2002).

Example 1

This application will depend on some sinmilation data. Simulate a sample of size 200 from
the model y = sin2n (1-x)*+xe, where x~N{0,1) and e~uniform[0,1]. A perfect smooth would
recapture the original single y = sin2n(l-x)%, exactly. For a direct comparison of the perfect
smooth and the conditional mode estimation, a scatter plot of the original data, the perfect
smooth and the estimated conditional mode curve is shown in Fig. 1. The performance of the
estimator can be tested using R’ ; (the correlation coefficient between §, the predicted values and v,
the actual values).

s SSE

7 8STO

where, SSE = E(y,-¥)? denotes the error sum of squares, SSTO = E(yi-y) denotes the total sum of
squares and ¥ denotes the mean of the actual values . For the current data, SSE = 1.3958, which is
small relative to SSTO = 15.3209 and R?,, = 0.9089, which is closed to | and indicates that the
correlation between the actual and predicated values is very strong. This comparison indicates that the
proposed estimator of the conditional mode is reasonably good.

Perfect curve

0.0 0.2 0.4 0.6 0.8 1.0
X

Fig. 1: Comparison between the mode estimation and the perfect curve
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Fig. 2: Three different estimations for the ethanol data

Example 2

Consider the ethanol data, which describes the relationship between the predictor E (ethanol) and
the response NOx (Nitric Oxide). Clearly the relationship is not linear. The regression relation
estimated by using three different estimators, the proposed estimator (mode estimator) and another
two estimators from S-Plus program, the locally weighted regression (loess) estimator and the kernel
estimator. A scatter plot of the data together with the graphs of the three estimators is shown in
Fig. 2. It is clear that the proposed estimator is reasonably good.
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