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Abstract: We proposed several estimators for the negative binomial dispersion
parameter. The proposed estimators are combinations of existing ones using
appropriate weights. We then compare, by sumulation, the biases and efficiencies
of the proposed estimators with those of the method of moments estimators and the
maximum quasi-likelihood estimators. The simulation results indicate that the
proposed estimators perform well in terms of biases and efficiencies in many
instances. We conclude from this study that the combined estimators significantly
reduce the mean bias of the estimators and more efficient than existing estimators.
The relative efficiencies of all the combined estimators increases as the sample size
Increases.
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INTRODUCTION

The negative binomial random variable Y 1s a non-negative discrete random variable with
probability mass function, given by:

d+y+l L‘FLY .
P(Y=y)= [ o1 }[“ﬂb} {“+¢}= M 9=0,y=012,., O

0, clsewhere

The location parameter i1s p and for a fixed u, ¢ 1s the dispersion parameter. Note that,
if the negative binomial dispersion parameter ¢ 1s allowed to become infimtely large, then the
resulting distribution is the Poisson distribution. The variance of the distribution is given by
o’=ptp¥d. Indeed, when ¢ is known, the negative binomial distribution with parameter i is
a member of the exponential family. In this case, ¥ is a complete, sufficient statistic and is a
mimmum variance imbiased estimator for p. As the parameter of interest here is ¢, we will
briefly discuss some problems with the existing estimation methods of ¢.

The negative binomial distribution (NB) may be viewed as a one-parameter distribution
where either p or ¢ is unknown, or a two-parameter distribution, where both p and ¢ are
unknown. The two-parameter distribution 1s difficult to work with and when we can assume
that ¢ is known, many simplifications result However, in most practical situations, both
parameters are unknown and need to be estimated. Tn particular, estimation of the negative
bimomial dispersion parameter is extra difficult in the sense that most of the commonly used
estimators for such parameter are not well defined or do not exist in the entire sample space.
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For instance, when the sample mean is equal to the sample variance, the method of moments
estimator becomes infinity whereas the maximum likelihood estimator ceases to exist when
the sample variance is less than the sample mean.

The dispersion parameter ¢ is traditionally estimated by the maximum likelihood or
method of moments approaches. Notably, when the sample variance exceeds the sample
mean these methods give fairly good estimates for ¢. On the other hand, when the sample
mean exceeds the sample variance (under-dispersion), or when the mean 1s only slightly
smaller than the variance, problems do occur. In the case of under-dispersion, the method
of moments estimation may yield negative estimates and the maximum likelihood estimate
does not even exist (Levin and Reeds, 1977). Indeed, this fact was very frustrating to Pearson
who encountered a sample he believed was from a negative binomial distribution, but was
unable to estimate reasonably one of the parameters.

In the scenarios, when the sample variance is only slightly larger than the sample mean,
the estimates for ¢ often turn out to be very large. For example, in simulation it is common
for ¢ estimates to exceed 500 or 1000 when the true value of ¢ is 5.

These problems limit the usefulness of both methods and hence some other methods
need to be considered in an effort to improve the estimation of ¢. In this study, we attempt
to estimate the dispersion parameter of the negative binomial distribution by combining the
method of moments and maximum quasi-likelihood estimators in a variety of different ways
via appropriate weights.

Bayesian and empirical Bayesian methods were discussed by Walter and
Hamedani {1991) and Al-Saleh and Al-Batainah (2003). We refer to Ghosh et al. (1983),
Ahmed (1991, 2000), Khan and Ahmed (2006) for detailed studies on the combined
estimation methods. Tn recent years, many researchers used the negative binomial to model
count data, including Puig and Valero (2006), Greene (2008), Jones et al. (2009) among others.

ESTIMATION METHODS

Based on the reviewed literature, we encountered more than ten different estimators for
the dispersion parameter ¢. Here we describe few that are commonly used.

Method of Moments Estimator (MME)

The simplest way to estimate the negative binomial parameters is by the method of
moments. By equating the sample mean ¥ and the sample variance S to the corresponding
population mean u and population variance o’=u+p*¢ and calculating the solutions with
respect to 1 and ¢ one can get:

f=yand §=—2 (2)

Where:
Y37
=1

n-1

S =

The Eq. 2 reveals several apparent problems in estimating ¢ which are listed below:
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¢ Tf the sample variance equals the sample mean, then the estimator of ¢ is not defined
e Ifthe sample variance 1s less than the sample mean, then the estimator of ¢ is negative
¢ Ifthe sample variance is slightly more than the sample mean then the estimator of ¢ is

very large

In order to illustrate the behavior of ¥ and $* for the NB, we generated random samples,
each of size 50, from a negative binomial distribution with parameters p =1 and ¢ =3. The
following graph is a scatter plot of S versus ¥ for 2000 such samples. The points falling
above the line (3° = ¥ ) are from over-dispersed samples and hence their estimates for ¢ can
be found using MME. The points falling below the line (3* = ¥) represent under-dispersed
samples, in which the MME of ¢ 1s negative. Based on 500,000 Monte Carlo replicates of the
above scenario, the empirical probability of getting an under-dispersed sample is 12.42%.
This shows that although the underlying model may be clearly over dispersed (1 = u<o = 3),
for small sample sizes, there is a good chance of getting under dispersed samples which lead
to negative MME’s.

The expression for the large-sample variance for MME of ¢ was given by Anscombe
(1950) as follows:

var( = 28D, yhere 6= 1 (3)

Maximum Likelihood Estimator (MLE)

The maximum likelihood estimates are derived by setting the partial derivative of the
log-likelihood function equal to zere and solving the resulting estimating equations with
respect to the parameters u and ¢. The maximum likelihood estimator of pis i=Y and the
maximum likelihood estimator of ¢ (say, ¢, ) is the solution of the following Equation:

nln 1+z =n 1 +n, l+L +n, l+L+L + o (4)
¢ ¢ ¢ ¢+l 9 o+l ¢+2

where, 1 15 the sample size, n, 1s the number of ones mn the sample, n; 1s the number of twos
in the sample and so on. The above equation has a unique sclution provided that ¥ <S%
These estimators have been considered by Piters et al. (1977), Clark and Perry (1989), Walter
and Hamedamni (1991) and others.

The aforementioned relation can be re-written as:

i

Sk AR SRR S 5
§;¢+r+nln¢+y 0 (3

Unfortunately, there is no closed form for 4,,, and Eq. 5 must be solved iteratively for
the ML estimate 6., the Newton-Raphson or scoring methods are efficient and
convenient procedures for doing so. Having said that, if the initial values of the parameters
are poor then the iteration may be very slow and costly. Note that Eq. 5 will have a unique
solution provided that 3>Y. For a proof of the existence of at least one possible
solution of ¢ (Anscombe, 1950) and for a proof of uniqueness of the solution (Levin and
Reeds, 1977).
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Fig. 1. Sample variance plotted versus sample mean for 2000 Monte Carlo samples each of
size n = 50 from a negative binomial distribution with p=1and o = 3

However, for under-dispersed samples, the maximum likelihood estimate for ¢ does not
exist at all. The log-likelihood function behaves asymptotically, reaching no maximum when
the sample variance is less than the sample mean. Hence, no finite maximum likelihood
estimate is attainable (Levin and Reeds, 1977). Note that if ¥ =0, then (3 =¥ = 0) and the
MLE does not exist and Eq. 5 is of no use. Even when $%> ¥ there are other problems in
estimating ¢. For example, results from simulation showed large upward biases and large
mean squared errors for the MLLE. For the peoints in Fig. 1 falling just above the line (3* =7),
it can be noted that these samples yield very large estimates for ¢ when either the MME or
MLE are used.

Piegorsch (1990) and Anraku and Yanagimoto (1990), following the study of Clark and
Perry (1989), suggested re-parametrization by (¢ = 1/d). Then a was estimated by the
maximum likelihood approach. Piegorsch (1990) used the following form of the negative
binomial probability mass function:

Diy+a™ [ o

y !
1+ sonoe>0, =0,1,2,...,
P(Y =y)=4 yilta™) 1+ocuj( o o Y (6)

0, clsewhere

The ML estimating equations are:

LR /B S AL AR
on &

u l4+op

U v 1 wy +o) | 7
" E{ [ J o log(1+ o)+ Lrom } 0 )

The second equation in (7) reduces to:

o i1 n nu(y + ety
= - —log(l+ou) +—"—->=0

) perger v A R OAY
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The ML estimate of pis #=7Y and the solution to %€ _ at ®={ gives the MLE of .

do
Such a solution 1s numerically available via a nonlinear root-finder. By estimating ¢ through
its reciprocal (¢ = 1/¢) we can avoid the problem posed by infinite values of the MLLE when
S?= ¥ . For a comprehensive treatment on the existence and uniqueness of the MLE, we refer
to Aragan et al. (1992), Willson et al. (1986) and Ferrer1 (1997).

Extended Maximum Quasi-Likelihood Estimator (MQLE)

The MQLE for the negative binomial parameter ¢ was first obtained by Clark and Perry
(1989). The MQLE & is obtamed by solving the following estimating equations
simultaneously:

H iy Lrow | (®)
ou Hln ltop
Wl Ly lrow), Gimw ey, v 1 |, (9)
oo T l+ay, | al+op) 2Aa+6+6ay) l+oay, 2c+6)

The first equation leads to the MQLE of u, =Y. The MQLE of @, & is obtained by
solving the following equation iteratively and replacing i by ¥:

i‘{ll“[lﬂw]‘ v, 1+, +(y,—u)}: n (10)

T+&y, | 1+6y, 200+6+60y) ollton)| 20&+6)

This procedure protects from getting infinite values of ¢ when the sample mean is close
to the sample variance (Ross and Preece, 1985), however, negative &'s were encountered in
the simulation.

Other Methods of Estimation

Several altemative methods were suggested mn the literature to estimate the negative
binomial dispersion parameter . We present a brief description for some of these
methods.

The zero-class estimator considered by Piters et al. (1977), can be derived by equating
the observed and the expected number of zero values among the ¥'s (sample).

Willson et al. (1984) used a multistage process to estimate ¢. As a few of the estimates
for ¢ (in the MME) are extremely poor, such estimates would change dramatically if a few
more observations were added to the sample. This procedure continues to add observations
to the sample until the estimate of ¢ begins to converge in some specified manmer. However,
these good results are often obtained by reaching very large sample sizes in the multistage
sampling. Tt should be noted that for some samples this procedure fails to produce an
estimate of ¢ (positive and finite) because of under-dispersion

Anscombe (1949, 1950) suggested the digamma function estimator using an iterative
method based on the following transformation:

oo
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Anralu and Yanagimoto (1990) maximized a conditional likelihood function to estimate
. They treated the under-dispersed samples as Poisson samples. In these samples, ¢ was
defined as mfinity and & was defined to be zero. It can be shown by siumulation that the
chance of misclassifying a negative binomial sample as Poisson 1s large.

The use of the large likelihood estimator LLE was suggested by Shenton and Bowman
(1967). Steiner (1993) applied the LLE to the negative binomial dispersion parameter . The
LLE is obtained by setting the partial derivatives of the usual MLE to a small positive
constant (say ¢ = 0.13) rather than zero and solving for ¢.

Another estimator for ¢ can be found using the reweighed estimation by enlarging the
sample variance by increasing the frequency (weight) of the smallest and largest
observations that produce the largest increase in the ratio 3%/ ¥. The use of the reweighed
estimation for the negative binomial dispersion parameter was suggested by Steiner. The

repeated application of the technique will usually give S; ~1. However, it can be shown by
¥

simulation that some samples cannot be over-dispersed. Further, another problem involved
in this method is when to stop the re-weighing process.

Some Concluding Remarks

From the above existing methods of estimators, it 1s observed that the digamma and
zero-class estimators have no redeeming features as compared to the MME and MLE and
have substantial disadvantages. These two methods are now rarely used.

The MME and MLE for the parameter ¢ appear to have similar characteristics. For small
sample sizes, the MME is recommended and when p>¢ the MLE is recommended When the
sample size is adequate (20 and above) and « = 1/¢ is not very small, then the MQLE appears
to be slightly more accurate than MLE. The MQLE is recommended when $° is close to ¥.

In most cases, using the multistage estimator produces better estimators for ¢ when
there 1s no restriction on the sample size (cost) since the results in the multistage procedure
are often obtained by reaching very large sample sizes.

The LLE performs well in most parameter combinations. However, there are some
difficulties in the iteration convergence, particularly in the case of under-dispersed samples
with sample size less than 150. This forces the researchers to mcrease the sample size, which
may not be always possible.

It 1s noted that when the sample variance 1s greater than the sample mean, the MME 1s
easy to calculate and will have a small mean squared error (MSE). On the other hand, when
S% is close to ¥, the MQLE performs better than both MME and MLE. This suggests that
perhaps two or more estimators can be combined in the hope to get a better estimation
strategy.

SEVERAL COMBINED ESTIMATORS

Suppose that & and 8 are two estimators for 6. Our problem is to combine & and 6 to
obtain a single improved estimator for 6. There are two ways for combining such estimators.
The first method 1s linear combination estimation. In general, for a fixed number w such that
we(0,1), the linear combination estimator 1s defined as:

Bw)=wh+{1-w)d

The combined estimators can be further mmproved by finding the optimal weight.
Probably, fixed weight can be replaced by random weight, resulting in preliminary and
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shrinkage-type estimators. We refer to Ghosh et al. (1983), Ahmed (1991, 2000), Khan and
Ahmed (2006) for detailed studies on this topic. Generally speaking, the shrinkage estimator
based on optimal weight dominates the classical estimator in multi-sample situation. The
second method of combiming 1s the binary choice and 1s essentially classical Neyman-
Pearson hypothesis testing.

Here, we introduce several combined estimators by choosing either the MME or the
MOQLE depending on the outcome of a test of the null hypethesis Hy:0*/p = b against the
alternative Hy:0%/u>b where b>0 is a prespecified constant. More detail about the use of
combined estimators can be found in Efron and Morris (1973, 1975).

Combined Estimator 1 (Comb 1)

To estimate the dispersion parameter ¢ = 1/¢ of the negative binomial, let ¢y, and Gy 5
be the MME and MQLE of «, respectively. Then the combined estimator for & depending on
the variance test (VT) or the index of dispersion test (Karlis and Xekalaki, 2000) for more
details 1s given by:

o = %’MQLD T*ZCT, (11)
Oype. Otherwise

6 = Gy T 22+ By I(T < )

Where:
2
T = —I)S—_, =%
by "

b 1s a nonnegative prespecified constant and I(A) 13 one if A is true and zero
otherwise.

Note that the MOQLE is not defined for some samples and the MME is defined for all
cases. To avoid this difficulty, we define the following estimator, which always exists.

Combined Estimator 2 (Comb 2)

& = &, if & exists (12)
Cne.  Otherwise

Further, we define the following combined estimators (Justification 1s given later).

Combined Estimator 3 (Comb 3)
& {p%}am +[4_?jacm (13)

Combined Estimator 4 (Comb 4)

=13 e o e s
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Combined Estimator 5 (Comb 5)

o2 o,
MOLE T+ MWME

o _ Var(Oyp)  Vary,g)

? 1 1
+

{]ar(&MQLE) Y\Afaf(éimms)

which can be simplified as:

o - Bpere [Var(8y 5001+ Sy [Var(d o)1 1s)

Var(Sygz ) + Var(Gye ¢

In the above estimators, we are trying to improve the combination of Gy and @yq: by
using different weights. In &.°, the use of 40 is suggested by simulation. We used different
fixed weights in the simulation and it turmed out that the use of 40 produced a good
estimator. In &,°, we use the critical value of the variance test instead. In & Swe use the
variances of the estimators to find an improved combined estimator.

In the following section, an extensive Monte Carlo simulation study is carried out to
mvestigate the behavior of the suggested estimators. We numerically compare the biases
and MSE's of the ¢, and & ; with those of our combined estimators.

SIMULATION STUDY

To compare the various estimators, we use the Mean Squared Error (MSE) criterion to
evaluate the proposed estimators. The MSE 1s defined as:

MSE®,6) =E(0- 07,

where, 6 is an estimate of 0. Further, the Relative Efficiency (RE) of an estimator 6 with
respact to another estimator 8° is defined by:

RE(®,8") = MSE(®)
’ MSE(®")

A simulation study 1s carried out by taking samples of size n = 30, 50,100, 150
from negative binomial distribution with parameters p and ¢, where p = (1, 3, 5, 10, 20) and
b =(1,2,..,10, 15, 20). Each simulation is repeated 2000 times. Note that the under-dispersed
samples (S?<Y ) were discarded from the simulation study. More importantly, only a few
samples were discarded m the sunulation with a combined estimator because in most of the
under-dispersed samples, the MQLE is selected which has a valid estimator in most cases
(Clark and Perry, 1989). The performance of the combined estimator &,” depends on the value
of the constant b. The optimal choice of b is still an open question problem for future
research. In our simulation experiment we consider the choice b = 2. Followmg Piegorsch

(1990), the restriction &=

., where y, .15 the largest vale of y was applied for all estimates

max

to guarantee the existence of the maximum number of estimates.
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The ML estimating equations were solved using S-plus. The number of replications for
each parameter configuration was initially varied and it was determined that 2000 simulations
were adequate because a further increase m the number of replications did not sigmficantly
change the results. Thus, in each case, 2000 samples were randomly generated. We compared
the simulated mean bias, Simulated Mean Squared Error (SMSE) for each estimator based on
2000 simulations. Moreover, the Simulated Relative Efficiencies (SRE) of the estimators were
calculated by:

SRE(G, &) = SMSEGune)
SMSE(&)

where, the SMSE 1s obtained by:

2000

SMSE(E") = ¥ (& - ) /2000
i=1

If the convergence of the estimating equation were not achieved, then the sample was
discarded. Again, note that the convergence of the estimating equations is sensitive to the
mnitial values provided to the S-plus. The number of rejected samples depends on the values
of the parameters p and o as well as on the sample size n. The number of rejected samples
decreases as the values of the parameter p and ¢ increase. The number of rejected samples
increases as the sample size n increases. Further, the number of the rejected samples declined
to zero for large values of ¢, p and for fixed n.

The simulated relative efficiency results are presented in Fig. 2-5 and the mean bias
results are presented in Fig. 6-9.
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Fig. 2. Simulated relative efficiency of the estimators of the dispersion parameter for n = 30.
(a) formu=1, (b) for mu =3, (¢) for mu= 3, (d) for mu = 10, (e) for mu = 20
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Fig. 9 Mean bias of the combined estimators of the dispersion parameter for n = 150. (a) for
mu=1, (b) for mu= 3, (¢) for mu = 3, (d) for mu= 10, (e) for mu=20

RESULTS AND DISCUSSION

Based on our simulation study, we make the following observations from Fig. 6-9:

In terms of mean biases, we note that the mean biases for the MME estimators of ¢ = 1/¢
are negative in most of the parameter space and that the magnitude of biases decrease as the
sample sizes increase. This is true for all of the proposed estimators. We see that the biases
of the MQLE and the @.° estimator have the same sign and the biases of the &, and the &,"
estimators have the same sign as well.

For fixed n and @, the mean bias decreases as | ncreases and for fixed p and ¢, the mean
bias decreases as n increases. For fixed p and n, the mean bias decreases as o decreases
(that is, ¢ increases). Further, Fig. 6-9 reveal that as n increases, the biases of all the
proposed estimators become more stable. For o - ! (¢ =3), all estimators have biases close
to each other. 3

The combined estimators, especially &.°, significantly reduce the mean bias of the MQLE
estimators. The MME has smaller bias than the other estimators for small p and large «.

In terms of relative efficiency, with respect to the MME, we make the followimng
observations from Fig. 2-5:

The relative efficiencies for the MQLE and all the combined estimators increases as the
sample size n increases.

All combined estimators are more efficient than the MMW . The first combined estimator
&,° has a relative efficiency greater than both the MME and the MQLE in most of the
parameter space and has a relative efficiency as good as MQLE in the rest of the parameter
space. For small u and small &, the MME is better than both MQLE and &,° estimators. For
(n>=350), the second combined estimator, &,° has less relative efficiency than the &, ; but it
improves over the &,° in the cases when the & ° has better performance than &,°. The third
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combined estimator (&,%) and the fourth combined estimator (&,%), have similar performances
to the first combined estimator. The fifth combined estimator (é.°) is the best among all the
proposed estimators in the entire parameter space except for small values of & (large ¢) and
for very small u (p<l) where, &, has a very close perfermance to that of the MME.

As o decreases, all the proposed estimators have a performance very close to that of the
MME. The difference between the estimators can be seen clearly for large « ( Fig. 2-5).

For fixed p and n, the relative efficiency of all the combined estimators increase as o
mcreases. Also, for fixed n and ¢, the relative efficiency of all the combined estimators
increase as | increases.

Tn summary, except for p<1 and small ¢, the combined estimator, &.° is superior to all
other estimators studied here. For small p (u<l) and small ¢, the MME will be a sensible
choice.
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