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Abstract: The aimed of this study was to mtroduce the general multilevel models
and discusses the Generalized Maximum Entropy (GME) estimation method that
may be used to fit such models. The proposed procedure 1s applied to the two-level
data model. The GME estimates were compared with Goldstein’s generalized least
squares estimates. The comparisons are made by two criteria; the bias and the
efficiency. We find that the estimates of two level’s model were substantially and
significantly biased using Goldstein’s generalized least squares approach.
However, the GME estimates are unbiased and consistent, we conclude that the
GME approach 1s a recommended procedure to fit multilevel models. An application
to a real data in education is also discussed.
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INTRODUCTION

Multilevel linear models or random coefficients models are a type of mixed model with
hierarchical data in away that each group at the higher level is assumed to have different
regression slopes as well as different intercepts for purposes of predicting an individual-level
of the dependent variable. Random coefficients model is illustrated by Bryk and Raudenbush
(1992), Goldstein (1987), Langford (1987) and Raudenbush e al. (2005). The two levels model
can be expressed in two equations; level 1 and 2 as:

Level 1

v, =BytB <X+, i=12,.n (1)
j=12,...n

where, 1 refers to the level 1 unit and j refers to the level 2 units, y; is the response variable
forlevel 1 unit i within level 2 unit j, By represents random intercept for the level 2 unit j, B,
represents random slope of variable X, of unit j and r; represents the residual for unit 1 within
unit j. Also, T is the largest number of levels and n; is the jth level sample size.

Level 2

By = Yog + Yo X W, + Uy, (2)

B1, =Yy +v”><WJ+U”
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In level 2 the parameters vy, and y,, are intercepts, v, and 7y, represent slopes
predicting By, and B, respectively from an outer variable W, explanatory variable of level 2.
Noting that, W, should be in matrix form involves a (J+1) row vector of predicters i a block
diagonal fashion. Moreover, U, and U, are level two random errors (random effects) that
assumed to have zero means with an arbitrary variance covariance matrix.

The traditional estimation method used to estimate the parameters of model given in
Eq. 1 and 2 is the iterative generalized least squares method; which is a sequential refinement
procedure based on Ordinary Least Square (OLS) estimation. The method has been described
n detail by Goldstein (1986). For known variance covariance matrix (V) of the levell residual,
then the GLS of the coefficients m level 1 1s:

B= V)T xVY
However, the GL.S analysis to estimate level 2 parameters is:
T=(WVRW) T WYY
&

Given that, V' and V & V, where, vec is the vector operator and %s the Kronecker
product.

GENERALIZED MAXIMUM ENTROPY

The traditional maximum entropy formulation is based on the entropy-information
measure which reflects the uncertainty about the occurrence of a collection of events.
Shannon (1948) defined the entropy of the distribution (discrete events {x,, x2, ..., x,} whose
probabilities of occurrences are py, pa, -...Py), as the average of self-information:

H(P) = pr,l n(p,)

where, 0In(0)y =0.

Since, the 1990°s many attempts have been made to apply the method of maximum
entropy m the area of linear models. Golan et al. (1996) proposed an estimator based on the
maximum entropy formalism of Taynes (1957) that they called the Generalized Maximum
Entropy (GME) estimator. The idea underling the GME approach in the general linear model
can be clarified by considering the followng nonlmear relationships:

v, =fx,pni=12,..n

where, B = (By,ps,-...Px) is the vector of parameters to be estimated, the regressor variable x,,
1=1,2,... nare K-dimensional vectors whose values are assumed knownand e, 1=1,2,...n1is
the random error.

In GME, the unknown parameters are reparameterized as follow: § = ZP; where, Z is a
(K~KR) matrix and P 1s a KR-vector of weights such that p,>0 and p',1; = 1for each k.
Simply, each P, k =1,2,.. K can be defined by a set of equally distanced discrete points
2 = [Zu1: %2, Bizse 7] Where, R=2 with corresponding probabilities P'y = [Pur,PisPis-- -Pirl-
That is:

R R
Be= 27 Py - 2P, =1 0<p, <1, k=12_.K
r=1 =1
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In similar fashion, the disturbance term may be rewritten as and e = VW, where V is a
(n*x nJ1) matrix and W is a nJ1-dimensional vector of weights; that is to say:

The choice of Z should be uniformly and symmetrically around zero with equally spaced
distance discrete points, for example Z = (-¢,0,¢), ¢ large value. On the other hand, the actual
bounds for v, depend on the observed sample as well as any conceptual or empirical
information about the underlying error. However; if such conceptual or empirical
mformation does not exist, then v; may be specified to be uniformly and symmetrically
distributed around zero. Chebychev’s inequality may be used as a conservative means
of specifying sets of error bounds. For any random variable, X, such that E(X) = 0 and
Var(X) = ¢°, the inequality provides, P(|X|<do)=1-1/d* d=0; then the chebchyev’s error
bounds are v, = do and v, = do. One can use 30 rules. However, the number of support
points for each parameter, R and for the disturbance, J1, may be increased to reflect
higher moments or more refined prior knowledge about B and €, based on Al-Nasser (2003),
Al-Nasser (2005), Ciavolino and Al-Nasser (2009) and Golan (2008) it appears that the
greatest improvement i precision comes for using R and J1 to be 5 support points.

Now, using the reparameterized unknowns’ p = ZP and e = VW, we rewrite the general
linear model as follows:

y=f{x, ZP+VYW

Then maximum entropy principle may be stated in scalar summations with two
nonnegative probability components and the GME estimators can be achieved by solving
the following non-linear programming problem:

Maximize H(P,W) = P'In(P)-W'In{W)
Subject to:

i y=f(xZP)+VW
(i) (I, ®1,)P=1K (3)
Gii) (I, ®r) W=1,

Note that & is the Kronecker product, 1, is a K-dimensional vector of ones and
In(P) = (IN(p,).In(p,),.. . In(pe)). The GME system i Eq. 3 18 a non-linear programming
system that can be solved by applying the Lagrangian method, in which after finding the
lagrangian function, the first order conditions are solved.

GENERALIZED MAXIMUM ENTROPY TO RANDOM COEFFICIENT MODEL

In order to estimate the two level random coefficient model by using GME method we
rewrite Eq. 1 and 2 by one equation as:

i:1,2,....,nJ (4)

¥ =T Yo *W A U+ (1 +, ¥ W+ U X H o120
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In the new general model Eq. 4, there are four unknown parameters which should be
reparametrized by following the GME principles, that is mean each parameter will be rewritten
as a convex combination of a discrete random variable in the following matrix form:
Yoo = AP, where, I'; P=1,v,, =Z2Q, where, 1'; Q =1

Yo =CN, where, I'y N=1, v,, =ZQ, where, 1'; G=1

Also, in this model; there are three error terms that should be reparametrized in a similar
manner:

U, = V'T, where, I'n, = (I n®1'JT; U, = V'F; where, I'n = (I ®1')F and R = VO, where,
I'n; = (I W1, )0,

Using these reparameterization expressions, then the model can be rewritten as:
Y = APHXZQFWONFX(WDGHV F+HVITHVO

Therefore, the GME nonlinear programming system:

Maximize:
H(P, Q,N, G, T, F, O) = PIn(P)-Q'm(Q)-N'mi(N)-G'In{ G- T'In{ T)F'In(F)-O'In(F)

Subject to:
(1) Y = APHXZO+WCNTX (WD GV 'FHV TH-VO
@ P=1L3)10Q=1L#HIN=1(51:G=1
(6) 14T, (7) 151, (8) 1% = (1,&1',)0

Note that & is the Kronecker product. Then this nonlinear programming system can
be solved numerically. However, the final estimators will be obtained by the following
formulas:

o =AP; o =ZQ Q!'m:CN and ¥, = DG
SIMULATION STUDY

A simple Monte Carlo simulation study 1s considered to study the performance of the

parameter estimation using GME. For the purposes of the simulation study we considered

the following balanced random slope model:

¥y =Bx, g i=1,2,...n

Bi=v+viw;+u;,  j=12..7
Then the compound model:

¥ij :(Yﬂ +Y1WJ+UJ)X‘J +€u
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Table 1: Monte carlo comparisons between OLS and GME for Random coefficient model

Yo kil
Sample size Bias (O1.8) Bias (GME) Eft Bias (O1.8) Bias (GME) Eff
10 0.0287 0.0110 1.75 0.0162 0.0021 1.31
20 0.0281 0.0094 1.52 0.0123 0.0015 1.30
30 0.0270 0.0095 1.58 -0.0113 0.0015 1.19
50 0.0205 0.0082 1.62 0.0222 0.0010 1.24

Then the simulation study performed under the following assumptions:

*  Generate 1000 random sample of size n =10, 20, 30 and 50 and number of intercepts
I=2

e Theerror ~N(0, 1), X~Exp 1 and set B, =, =1

¢  Theerroru~N(0, 1), W~TI(0,1) and sety, =1, v, =1.5

* For GME estimator, we mitial tlree support values for parameter in the interval
[-10, 0, 10] and three support values for the error term selected in the mnterval [- 3 S, 0, 33]
where, S is the standard deviation of the dependent variable y

*  The simulation results for estimating fixed effect parameters, are given i Table 1

The simulated bias and the efficiency are computed based on the following formulas:

2@ _ MSE(CLS)

Bias=-*3 — and Eff =
1000 MSE(GME)

Under the simulation assumptions, the results in Table 1 indicate the superiority of GME
estimation method over the OLS. It can be noted that, for all sample sizes the GME estimators
are more accurate and more efficient than their counter part based on the OLS estumation
method.

ANAPPLICATION TO A REAL DATA

The data of the High School and Beyond (HSB) study is used. These data consist of a
total sample of 7,185 students who are nested within 160 schools; 90 public and 70 private.
Between 14 and 67 students were assessed from each school, with a median of number of 47
students assessed. The outcome of interest is a student-level measure of math achievement.
The first predictor was a continuous measure of student sociceconomic status (SES). The
second predictor was a dichotomous measure of school sector in which a value of 0 reflected
a public school and a value of 1 reflected a private school (49% of schools were private). The
final predictor was a continuous measure of disciplinary climate of the school 1 which higher
values reflected greater disciplinary problems. Since we need the average intercept and
average slope, then each school has its own regression model and this means the intercept
and the slope vary within schools.

The Model

The random coefficient model with two levels is used to represents the relationships
between the variables, where level-1 1s the student’s level and consists of two variables:

115



Asian J. Math. Stat., 3 (2): 111-118, 2010

Fig. 1: Math achievement model

+ SES: Socio-econoemic status
*  Mathach: Math achievement

Level-1  y;=By+Byx; gy ©)

where, y; is the outcome scores for student i in school j, x; are the values on the SES for
student i in school j. Each school’s distribution of math achievement is characterized by two
parameters: the intercept, B; and the slope By,

The intercept and slope parameters, [, and B are vary across schools in the level-2
model which consists of two variables:

*  Sector: 1 = Private, O = Public
*  Mean SES: Mean of the SES values for the students in thns school who are included in
the level-1

Then the school-level model can be written as:

Bu; = Yoo + Yo (Mean SES), + v, (Sector), +uy;
Level -2 (6)
By; = o + ¥, (Mean SES), +1v,, (Sector), +u,,

Where:

Yoo = Overall mntercept

Yo = The main effect of Mean SES,

Yoo = The main effect of sector

Y1 = The main effect of SES

Vi = Two cross level with interactions involving sector with student SES
Y = Mean SES with student SES. Moreover

uy; andu; = Random errors

The path diagram for the model is shows in Fig. 1.
The unified equation model; which represents the combinations of the Eq. 5 and 6 can
be written as:
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Table 2: Results for educational research model: OL8 and GME estimates

OLS GME
Model Coefficient SE Coefficient SE
For Scheol means
Intercept (¥,,) 12.10 0.20 12.63 0.21
Mean SES (¥,) 5.33 0.37 5.08 0.24
Sector (¥,,) 1.23 0.31 3.11 0.24
For SES-achievement slopes
Intercept () 2.94 0.16 2.94 0.11
Mean SES (¥,)) 1.03 0.31 2.95 0.21
Sector (¥,) -l.ed 0.25 0.81 0.22

¥y = Yoo Vo (Mean SES); + v, (Sector), + vy, X+, (Mean SES), x, +1v,; (Sector), X, +Uy; +u,X; + & {7)

We estimate y,, to study whether lgh-SES differ from low-SES schools in means
achievement (controlling for sector). Similarly, we estimate vy,, to learn whether private
schools differ from public schools in terms of the mean achievement once Mean SES is
controlled. These two estimates will clarify whether the Mean SES is significantly predicted
the intercept or the school’s slope, respectively. While by estimating v, we discover
whether high-SES schools differ from low-SES schools in terms of the strength of association
between student SES and achievermnent within them (controlling for sector). Also, we estimate
¥y; to examine whether the private differ from the public schools in terms of the strength of
association between student SES and achievement.

Now, in order to estimate the parameters by using GME estimation method; we need to
reparametrize the unknowns and the error terms n Eq. 7. Then the GME system will be a
nonlinear programming problem given as follows:

Maximize:

H(Pum P01= P02= Pm’ 1:’11= P12= Wy, Wy, W):_ Pufuln(Puu) - Pullln(Pm) - Pulzln@m) 'P1’1‘ln(P11) -
PP, ) - woniw ) -win(w ) - w"In(w)

Subject to:
Y = Z,Py, + (MeanSES) 7, By, +Sector Z, P, + X (Zy, Py, +

(MeanSES)Z, P, +SectorZ B, +v,w, )+ v,w, + vw

1'RPIZIIZI = 1’ I'RPIJI = 1’ 1'RPIZIIZI = 1’ I'RPEIZ = 1’ I'RPII = 1’ I'RPIE = 1’
(I, @1y )w=1n; (I, ®1"w, =1n; (I, ®1)w, =1,

Hereafter, we use the IMSL/Fortran in order to estimate the unknown parameters. The
estimation results are shown in Table 2.

The estimations results indicate that both methods gave almost similar effect on the
predictors, but the GME estimators have smaller standard error. Tn general, it can be noted
that Mean SES is positively related to school mean math achievement, Yo = 5.33(0.37) (GLS)
and 5.08 (0.24) (GME). Also, Private schools have higher mean achievement than public
schools, controlling for the effect of Mean SES, ¥ =1.23 (GLS) and 3.11 (GME). With regard
to the slopes, there 1s a tendency for schools of high Mean-SES to have larger slopes than
do schools with low Mean SES, % = 1.03 (GLS) and 2.95 (GME). The cnly difference between
the two methods is that the GL.S estimates indicated that private schools have weaker SES
slopes %2 =-1.64, while the GME estimates indicated that private schools have positive SES
slopes ¥ = 0.81.
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CONCLUSION

This study proposed the GME estimation method in context of parameter estimation of
random coefficient models. By comparing the GME estimates with their counterpart based
on Goldstein’s estimators, the simulation results demonstrated that GME estimates are
superior and often closer to the parameter than the GL.S estimates. For all sample sizes used
mn the simulation study, there is an advantage for using the GME estimator. Also, the real
data analysis also supports the robustness of the GME estimation method since the GME
estimators have smaller standard errors than the GLS estimators. The conclusions that are
suggested by the analysis of the given example are that; the SES positively related to the
Math achievement and the private schools have better achievement than the public schools.
Moreover, even the GLS method has good advantages from the computational and
interpretational point of view, it found that the GME method gives more precise estimates.
Consequently, the GME estimator can be recommended as an alternative method for
estimating the two level random coefficients parameters.
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