mfi&ﬁ ‘ |
Asian Joumal Of
Mathematics &
Statistics

ISSN 1994-5418

science
alert

ANSI%@i

s publishe
hitp:Jansinet.com




Asian Journal of Mathematics and Statistics 3 (3): 130-138, 2010
ISSN 1994-5418
© 2010 Asian Network for Scientific Information

The Ranked Sample-Mean Monte Carlo
Method for Unidimensional Integral Estimation

'A.D. Al-Nasser and *Mohammed Al-Talib
'Division of Area Planning and Residents Relations,
WRM, Emirate of Abu Dhabi, UAE
“Department of Mathematics, Southern Ilinois University Carbondale, USA

Abstract: This study introduced the 1dea of using the novel ranked set sampling
scheme for the Monte Carlo integral estimation problem. We proposed and
discussed the unidimensional integral problem. Tt is demonstrated that this
approach provides an unbiased and more efficient estimators than the traditional
estimators based on sumple random sampling. The method 15 illustrated by examples
for estimating 7 and {f (x)=e, O<x<1}. An application to estimate the Gini index
is proposed.
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INTRODUCTION

A defined integral, such as T, which cannot be explicitly evaluated, can be obtained by
a variety of numerical methods. Therefore, the inportance of good Monte Carlo integration
scheme 1s evident. Some of these methods were given by Rubinstein (1981) and Morgan
(1984) for univariate integration problem. In this study our concern is in the sample mean
Monte Carlo method for mtegral estimation. Consider the one dimensional integral:

I:Tg(x)dx (1)

This integral can be represented as expected value of some random variable. Indeed, let
us rewrite the mtegral as:

_g®
Ljf(x)f(x)dx

a

Assuming that f(x) is any pdf such that {f(x) > 0 and a< x<<b, when g (x)#0; then,

1-g| 8%
£(x)

For sumplicity, suppose that X 1s distributed uniformly over [a,b]; 1.e., X~ U(a,b), then:
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I —
boa E[g(x)]

Therefore an inbiased estimator of 7 based on SRS is given by:

. ig(X,)
6=(b-a)Lt— "

This 1s an unbiased estimator with variance:
| H
Var(8) = —{(b —a)f g’ (xydx - 12]
n a

It is in any case interesting to see how simple random numbers may be used to evaluate
deterministic integral. However, one can utilize the idea of Rank Set Sampling (R3S) of
Melntyre (1952) for mntegrals approximation. The majority of research of RSS has been
concerned with estimating the population mean. Few works in the literature were considering
the R3S in Monte Carlo methods; Samawi (1999) used the random Beta sampler to evaluate
non-stochastic integrals. Tn a similar fashion, Al-Saleh and Samawi (2000) investigated the
use of the Steady State RSS for integrals approximation. It tumed out that this procedure
unprove the efficiency of Monte Carlo methods much further. Later, Samawi and Al-Saleh
(2007) used the importance sampling technique with RSS on the multiple integrals
approximation.

In this study, we used the simulated RSS for univariate integral estimation based on the
sample mean Monte Carlo method.

RANKED SET SAMPLING

The balanced RSS scheme involves of drawing m sets of SRS each of size m from a
population and ranking each set with respect to the variable of interest. Then, from the first
set the element with the smallest rank is chosen for the actual measurement. From the second
set the element with the second smallest rank 1s chosen. The process 1s continued by keep
selecting the i order statistics of the i® random sample ntil the element with the largest rank
from the m" set is chosen. The scheme yields the following data:

Hence, the selected RSS will be denoted by:

{Xpmyi=12,.m}

[im
where X, ,; 1s the ith order statistics of the ith random sample of size m and it is denoted by

the ith judgment order statistics. It can be noted that the selected elements are independent
order statistics but not 1dentically distributed.
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In practice, the sample size m is kept small to ease the visual ranking, RSS literature
suggested that m = 2, 3, 4, 5 or 6. Therefore, if a sample of larger size is needed, then the
entire cycle may be repeated several tumes; say r times, to produce a R3S sample of size
n = rm. Then the element of the desired sample will be in the form:
X[l mlt X‘[l.m]2 X[l mlz X[l.m]x
X[z m]l X[2.m]2 X[z m]z X[z m]r
X[B.m]l X[a m]2 X[3.m]3 X[3.m]x (2)
X[m'm]l X‘[m ]2 X[m w]3 X[m'm]r

which can be represented as:

(X 1= 1 2000m, j=12,....r]

where X, ; is the ith judgment order statistics in the jth cycle, which is the ith order statistics
of the ithrandom sample of size m in the jth cycle. It should be noted that all of X, /s are
mutually independent, in addition, the X ; ., inthe same row of (2) are identically distributed;
More details can be found by Al-Nasser and Al-Rawwash (2007).

ONE DIMENSIONAL INTEGRAL USING RSS

In order to plan sample mean Monte Carlo RSS design for the problem in Eq. 1, n RSS
should be selected. Then the integral estimation has the following steps:

Stepl: Generate a RSS of size n= m x r from U(a, b)

{Upgi-i=1.2,..m, j=12,.r}
Step 2: Compute X, = a+(b—a) Uy,

Step 3: Compute g(X,)
Step 4: Find the ranked sample-mean estimator

228 (3

Lemma 1
O 18 unbiased estimator for I given in Bq. 1.

Proof
In order to proof this lemma, just take the expected value of Eq. 3; for both sides:

E(B,) =

b—g &L
mra ZZE(’G’(X@J)

=L i=l

Since, RSS are independent order statistics; this expectation can be rewritten as:
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. b— :
E(Bpss) = mra m'EE(g(X(DJ)
=

_b-a Z{E(g(x(ﬂ)

T

= (b- ) gRIf (x)dx

But f (x) is U (a, b), which means:

1
)= 1oa a<x<b
0 otherwise
and this complete the prove of the lemma.
EMPIRICAL STUDY

In this section we carry out some experiments to compare the efficiency of SRS and RSS,
in three different areas, Mathematics, Statistics and Economics, by considering the problem
of estimating Pi, Gaussian integral and the Gini index. For these comparisons, we generate
50,000 random samples, each of size n = mxr, where m takes the values 2, 6, 20 and 500, r
takes the values 3, 4, 5 and 6. The sumulated MSE, Bias and the EFF of the parameter were
used as a criterion in the comparison, as follows:

Nar NOL
Y68 366

MSE= , Bias = 1
NOI NOI

and the efficiency:

rr MSE (SRS)
MSE (RSS)

where 0 is the exact value, 6, is the estimate of the parameter and NOT represent the number
of generated sample (50,000).

The Number T

The constant T is an irational number; that is, it cannot be written as the ratio of two
mtegers. By using the equivalent of 96-sided polygons, Arclimedes (287-212 BC) proved
that 223/71<n < 22/7. Taking the average of these values yields to 3.1419. However, T can be
empirically estimated by drawing a large circle, then measuring its diameter and circumference
and dividing the circumference by the diameter.

For any circle with radius r and diameter d = 2r, the circumference 1s nd and the area 1s
7ur’. Further, 7 appears in formulas for areas and volumes of many cther geometrical shapes
based on circles, such as ellipses, spheres, cones and tori. Accordingly, & appears in definite
integrals that describe circumference, area or volume of shapes generated by circles. Tn the
basic case, the area of a quadrant of a circle of radius unity is given by:
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Table 1: Comparison between SRS and RSS in estimating m

m r Method Mean Bias MSE Efficiency
2 3 SRS 0.78527 -0.00043 0.00835 1.81697
RSS 0.78523 -0.00047 0.00459
4 SRS 0.78518 -0.00054 0.00621 2.13453
RSS 0.78527 -0.00043 0.00291
5 SRS 0.78573 0.00002 0.00496 2.50256
RSS 0.78559 -0.00011 0.00198
6 SRS 0.78546 -0.00025 0.00417 2.92495
RSS 0.78525 -0.00046 0.00142
6 3 SRS 0.78539 -0.00031 0.00273 1.76121
RSS 0.78526 -0.00044 0.00155
4 SRS 0.78515 -0.00055 0.00205 2.15098
RSS 0.78540 -0.00031 0.00095
5 SRS 0.78541 -0.00029 0.00165 2.51765
RSS 0.78540 -0.00031 0.00065
6 SRS 0.78516 -0.00055 0.00138 2.90075
RSS 0.78535 -0.00035 0.00047
20 3 SRS 0.78531 -0.00040 0.00083 1.78116
RSS 0.78535 -0.00036 0.00046
4 SRS 0.78548 -0.00023 0.00061 2.13117
RSS 0.78537 -0.00034 0.00028
5 SRS 0.78547 -0.00024 0.00049 2.51573
RSS 0.7854¢6 -0.00025 0.00019
6 SRS 0.78534 -0.00037 0.00041 2.92768
RSS 0.78533 -0.00037 0.00014
500 3 SRS 0.78543 -0.00028 0.00003 1.79253
RSS 0.78538 -0.00033 0.00002
4 SRS 0.78538 -0.00033 0.00002 2.17451
RSS 0.78543 -0.00027 0.00001
5 SRS 0.78540 -0.00031 0.00002 2.50562
RSS 0.78540 -0.00031 0.00001
6 SRS 0.78538 -0.00033 0.00002 2.8517
RSS 0.78538 -0.00032 0.00001
T 1
= _[ 1-x*dx &)
4

1}

The results for estimating (Eq. 4) are shown in Table 1 showing the MSE, Bias as well
as the EFF of the parameter estimates using SRS and RSS.

The Gaussian Integral

The Gaussian integral, or probability integral, is the improper integral of the Gaussian
function over the entire real line. It 1s named after the German mathematician and physicist
Carl Friedrich Gauss and the equation is:

Jr= j e dx (5)

This mtegral has wide applications mcluding normalization in probability theory and
continuous Fourier transform. It also appears m the defimition of the error function. The
Gaussian integral can be solved analytically through the tools of calculus. That 1s, there 1s
no elementary indefinite integral for

J.e"‘jdx

but the definite mtegral given in Eq. 5 can be evaluated. The gaussian integral 1s also can be
used to evaluate the exact value of .
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Table 2: Comparison between SRS and RSS in estimating normal probailities

m r Method Mean Bias MSE Efficiency
2 3 SRS 0.74719 -0.03851 0.00822 1.65648
RSS 0.74678 -0.03892 0.00496
4 SRS 0.74723 -0.03848 0.00653 1.81814
RSS 0.74673 -0.03898 0.00359
5 SRS 0.74685 -0.03885 0.00553 1.91966
RSS 0.74703 -0.03867 0.00288
6 SRS 0.74680 -0.03890 0.00487 1.95495
RSS 0.74696 -0.03875 0.00249
6 3 SRS 0.74693 -0.03878 0.00374 1.41662
RSS 0.74701 -0.03870 0.00264
4 SRS 0.74697 -0.03874 0.00217 1.17573
RSS 0.74686 -0.03884 0.00185
5 SRS 0.74684 -0.03887 0.00285 1.44932
RSS 0.74687 -0.03884 0.00197
6 SRS 0.74691 -0.03880 0.00262 1.42243
RSS 0.74675 -0.038%96 0.00184
20 3 SRS 0.74705 -0.03866 0.00217 1.16970
RSS 0.74683 -0.03887 0.00185
4 SRS 0.74669 -0.03901 0.00202 1.18514
RSS 0.74691 -0.03879 0.00171
5 SRS 0.74678 -0.03893 0.00191 1.16450
RSS 0.74687 -0.03884 0.00164
6 SRS 0.74682 -0.03889 0.00185 1.15031
RSS 0.74685 -0.03885 0.00161
500 3 SRS 0.74679 -0.03892 0.00154 1.01139
RSS 0.74684 -0.03886 0.00152
4 SRS 0.74684 -0.03887 0.00153 1.00837
RSS 0.74685 -0.03886 0.00152
5 SRS 0.74681 -0.03889 0.00152 1.00684
RSS 0.74682 -0.038%90 0.00151
6 SRS 0.74681 -0.03890 0.00152 1.00693
RSS 0.74682 -0.03888 0.00151

Therefore, to have different results; we shrinkage the integral interval to be evaluated
on a finite limits; say [a,b]. such formulation allow us to evaluate the area under normal curve.
Without loss of generality, we consider the integral limits to be [0,1]. Under the simulation
assumptions, the results for evaluating the integral

jc“gdx

1}

By using both sampling schemes; are shown in Table 2 showing the MSE, Bias as well
as the EFF of the parameter estimates using SRS and RSS.

The Gini-Index

Economists use a cumulative distribution called Lorenz Curve to measure the
distribution of mecome among households in a given country. Typically, a Lorenz Curve
(Fig. 1) 18 defined on [0, 1], continuous, increasing and concave up and passes through
(0, 0y and (1, 1)

For example, the point (a, b) on the curve represents the fact that the bottom a% of the
households receive less than or equal to b% of the total income. The Gini Index (coefficient
of mequality), 1s the ratio of the area of the region between y = x and the Lorenz Curve to the
area under y = x. The Gini index G for an income distribution of a certain country which is
represented by the Lorenz curve, for example:
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1.04
0.8
g Equality line
E 0.6
g 0.4 Lorenz curve
=
0.2
0.0 T T T T 1
0 0.2 0.4 0.6 0.8 1.0
Households (%)
Fig. 1: The Lorenz curve
Table 3: Comparison between SRS and RSS in estimating gini index: p=10.3
m r Method Mean Bias MSE Efficiency
2 3 SRS 0.17634 0.13434 0.01917 1.91670
RSS 0.13986 0.09786 0.01000
4 SRS 0.18083 0.13883 0.02013 2.04137
RSS 0.14004 0.09804 0.00986
5 SRS 0.18350 0.14150 0.02072 212170
RSS 0.13996 0.097%6 0.00976
6 SRS 0.18542 0.14342 0.02116 2.17311
RSS 0.14005 0.09805 0.00973
6 3 SRS 0.17636 0.13436 0.01842 1.89277
RSS 0.13994 0.09794 0.00973
4 SRS 0.18102 0.13902 0.01961 2.02428
RSS 0.14001 0.09801 0.00969
5 SRS 0.18356 0.14156 0.02027 2.10057
RSS 0.13995 0.09795 0.00965
6 SRS 0.18535 0.14335 0.02074 215214
RSS 0.13998 0.09798 0.00964
20 3 SRS 0.17626 0.13425 0.01813 1.88100
RSS 0.13998 0.09798 0.00964
4 SRS 0.18082 0.13882 0.01936 2.00833
RSS 0.14005 0.09805 0.00963
5 SRS 0.18355 0.14156 0.02010 2.08988
RSS 0.14000 0.09801 0.00962
6 SRS 0.18536 0.14336 0.02061 2.14286
RSS 0.14001 0.09801 0.00961
500 3 SRS 0.17630 0.13430 0.01804 1.87809
RSS 0.14000 0.09800 0.00960
4 SRS 0.18082 0.13882 0.00002 2.00686
RSS 0.14000 0.09800 0.00960
5 SRS 0.18354 0.14154 0.02003 2.08634
RSS 0.13999 0.09799 0.00960
6 SRS 0.18536 0.14336 0.02055 2.14033
RSS 0.13999 0.09800 0.00960

5

L(x) :ix2 +x

12 12

depending on the fact that The Gini Index 1s

G= 2j[x —-L(x)]dx

The performance of the coefficient of mequality over the mtervals [0, 0.3] 1s presented
in Table 3, the results indicate that the estimator based on R3S 1s superior to the estimators
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Table 4: Comparison between SRS and RS in estimating Gini Index: p =05

m r Method Idean Bias MEE Efficienc
2 3 SE3 0.1943¢ 0.09713 0.01089 1.05666
ESE 0.19444 0.09722 o010
4 SR3 0.19441 0.09718 0.01032 1.05490
ESE 0.1944¢ 0.09723 0.00985
5 SR3 0.19435 0.09713 c.o1o1e 1.04787
ESE 0.19441 0.0971% 0.00971
& SR3 0.19454 0.09732 0.01009 1.04721
R38 0.19443 0.09721 0.00964
& 3 SE3 0.19459 0.09737 0.009%0 1.02419
R38 0.19441 0.09719 0.00968
4 SE3 0.19443 0.09721 0.0097¢ 1.01874
R38 0.19444 0.09722 0.00958
5 SE3 0.19445 0.09723 0.00970 1.01553
ESE 0.19452 0.09730 0.00955
& SR3 0.19432 0.09717 0.00985 1.01378
ESE 0.19447 0.09725 0.00952
20 3 SR3 0.19441 0.09718 0.00957 1.00629
ESE 0.19440 0.09718 (0.00951
4 SR3 0.19442 0.09720 0.00954 1.00571
k33 0.19443 0.09721 0.002428
5 SR3 0.19450 0.09728 0.00953 1.00688
R38 0.19442 0.09719 0.00947
& SE3 0.19439 0.09717 (0.00951 1.00322
R38 0.19448 0.09724 0.00948
500 3 SE3 0.19445 0.09723 0.00%48 1.00017
ESE 0.1944¢ 0.09723 0.00%45
4 SR3 0.19445 0.09723 0.00948 1.00039
ESE 0.19444 0.09722 0.00%45
5 SR3 0.19445 0.09723 0.00948 1.0002&
ESE 0.19445 0.09723 0.00%45
& SR3 0.19444 0.09722 0.00945 1.00005
R33 0.19445 0.09723 0.00945

Table 5: Comparison between SRS and RES in estimating ginl index: p=1.0

m r Method Iean Bias MEE Efficiency
2 3 BRE 0.1947% 0.00034 0.00124 1.10714
R33 0.19435 -0.00008 0.00112
4 BRE 0.19426 -0.00017 0.000%4 1.24922
R33 0.19450 0.00005 0.00075
5 BRE 0.19438 -0.00006 0.00074 1.37719
E&3 0.19451 0.00007 0.00054
& ZR3 0.19449 0.00005 0.00083 1.55606
E&3 0.1943% -0.00005 0.00041
& 3 ZR3 0.19450 0.00008 0.00042 1.113&9
E&3 0.19442 -0.00002 0.00038
4 ZR3 0.19458 0.00013 0.00031 1.25023
R33 0.19459 0.00014 0.00025
5 BRE 0.19433 -0.00011 0.00025 1.40257
R33 0.19444 -0.000004 0.00018
& BRE 0.19448 0.00004 0.00021 1.58108
R33 0.19445 0.00001 0.00013
20 3 BRE 0.19444 (0. 000004 0.00013 1.10382
R33 0.19447 0.00002 C.00011
4 BRE 0.19436 -0.00008 0.0000% 1.23885
k&3 0.19446 0.00002 0.00007
5 ZR3 0.19448 0.00004 0.00008 1.400&3
E&3 019446 0.00002 0.00005
& ZR3 0.19449 0.00004 0.00008 1.55884
R33 0.19448 0.00004 0.00004
500 3 BRE 0.19445 0.00001 0.000005 1.09834
R33 0.19445 0.00001 0.000004
4 BRE 0.19444 0.000003 (0. 000004 1.27188
R33 0.19445 0.00001 0.000003
5 BRE 0.19445 0.000006 0.000003 1.40112
E&3 0.19444 -0.0000002 0.000002
& ZR3 0.19444 0.000002 0.000003 1.55179
E&8 0.19444 0.0000008 0.000002

based on SRS in estimating GINI mdex. Extending the area of coefficient of mequality to be
in the interval [0, 0.5] we observed the same inference about the proposed technique as given
in Table 4. Also, the similar were obtained in Table 5 as the inequality area is extended to be
in the interval [0, 1].
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CONCLUSION

In this study, we consider using simulated ranked set sampling for estimation the
umdimensional mtegral. The method is illustrated by Monte Carlo experiments for estimating
1 and normal probabilities and the Gini index. All the simulation experiments indicated that
estimators based on ranked set sample is more superior than the estimators based on simple
random samples of the same size.
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