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Abstract: In this study, power and sample size estimations in the context of test of
independent between categorical variables were examined. The required sample size
n an experiment is a function of the alternative hypothesis, the size of type I error
and the variability of the population. Power of a test is the probability of rejecting
a false null hypothesis and it depends on the effect size, type I error and the sample
size. A priori power analysis is determination of minimum sample size to obtain a
required power while post-hoc power analysis 15 calculating power of a test. A test
with small effect size requires large sample size to achieve a power 80% or more
while effect size of medium or large size needs small sample size to achieve that.
Test with small degrees of freedom will attain higher power than the same test with
larger degrees of freedom.
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INTRODUCTION

Power analysis and sample size estimation are aspects of the design of experiments and
other research studies in which data are collected. Determining the appropriate sample size
for an investigation, whether it is clinical trial or field experiments, is essential step in the
statistical design of the project (Cohen, 1988, Murphy and Myors, 1999). An adequate
sample size helps ensure that the study will yield reliable information, regardless of whether
the ultimate data suggest a clinically important difference between the treatments being
studied, or the study is intended to measure the accuracy of a diagnostic test or the
incidence of a disease (Foster, 2001; Nemec, 1991, Di Stefano, 2001). Generally, the
researchers choose a sample size large enough to enhance chances of conclusive results
while small enough to lower the study cost, constrained by limited budget and/or some
medical consideration. The required sample size in an experiment (test) is a function of the
alternative hypothesis, the probabilities of type I and type II errors and the variability of the
population(s) under study (Kramer and Rosenthal, 1999).

The probabilities of type T and type II errors are always predetermined prior to the test.
Type I error is also the level of significance of the test and it is the probability of rejecting
a true null hypothesis. Type I error 1s the size of probability of accepting a false null
hypothesis (Chow ef af., 2003). The power of a test 15 therefore 1-p (B is size of type II error).
Power of a test is the probability of rejecting a false null hypothesis and it depends on the
effect size (which is defined by the alternative hypothesis), type I error rate and the sample
size (Roger, 2000). In fact, considering these three parameters and the power of a test
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together, fixing any three will allow the determination of the fourth. For example, once we
define the effect size, type I error rate and the desired power, this definitely determines the
required sample size. Similarly, if the effect size, type [ error rate and the sample size are
defined, then the power of the test 1s determined.

Tn any method for deriving a conclusion from experimental data carries with it some risk
of drawing a false conclusion. There are two types of false conclusions that can be
committed and they are known as type I error and type II error (Huck, 2000). A type I error
occurs when one concludes that a difference exist between the treatment groups when, in
fact, it does not. Tt is type of false positive. The risk of type T error, assuming that there is
really no difference between groups is equal to «. A type IT error occurs when one concludes
that a difference does not exist between groups being compared when, a difference does
exist. A type Il error 1s a type of false negative. The nisk of a type II error occurring 1s denoted
by P. In a classical hypothesis of H; (null hypothesis) against the H, (alternative hypothesis),
there are four possible outcomes, two of which are incorrect:

*  Accept Hy when H 15 true

+  Reject H, when H; is false

¢ Reject H, when Hj is true (type T error)

*  Accept H, when H; 1s false (type II error)

To construct a test, the distribution of the test statistic under H; i3 wed to find the
critical region which will ensure that the probability of committing a type T error does not
exceed some predetermined level. This probability 1s typically denoted by a. The power of
the test 1s its ability to correctly reject the null hypothesis, which 1s based on the distribution
of the test under H,. The required sample size will be a function of:

*  The effect size (alternative hypothesis)
*  The size of type I error
¢ The desired power to detect H,

Current available methods for power analysis mclude pared and pooled t-test, fixed
effect ANOVA and regression models, binomial proportion comparison, biocequivalence,
correlation and simple swvival analysis models and even in multivariate analysis
(Oyeyemi, 2007). Numerous mathematical formulae have been developed to calculate sample
size for various scenarios in different researches based on objectives, designs, data analysis
methods, power, type I and type II errors and effect size (Chow et al., 2003).

Contingency Table

A contingency table 1s a cross classification of two or more categorical variables, the
simplest being a 2x2 contingency table. The contingency table test 13 a common method of
analyzing categorical data. One of its applications is to test whether two or more categorical
variables are independent of one ancther (Lebart et al., 2000; Clausen, 1998). Suppose X and
Y are 2 categorical variables with r and ¢ categories, respectively. If o, is the observed
count/frequency nthe celly (1=1, 2, 3,,,1;7=1, 2, 3., , ¢). Thenn, is the marginal total for
the ith row and n,; is the marginal total for the jth column. Then the sample size n is given as:

: c
2“;- = Zn.] =1
=

i=1
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The expected count/frequency e; of cell ij is the obtained as:

In testing, the hypothesis of independence between variables X and Y at a level of
significance, a test statistic Q 1s obtamed as follows:

\ (ij B Cij)z 2
Q= 227 ARV ER)

If the null hypothesis is true, the test statistic follows a chi-square distribution with
(r-1)(c-1) degrees of freedom. The hypothesis of independence 1s rejected if:

2
v N (0117611)

Q=

2
7 K rtxe-tym

where, %’ci)e .18 the critical value of the x* distribution at a significance level ¢ with
(r-1)(c-1) degrees of freedom. Ifthe mull hypothesis is not true, Q has the limiting
non-central ¥* distribution, with the non-centrality parameter 4 and (r-1)(c-1) degrees of
freedom.

Tn general, the following is valid for the non-centrality parameter A (Lachin, 1977):

A= nf(e°, 6" (1)

where, 1 is the sample size and f is the function of the vectors of parameters 0° and 0', which
are mvolved in the test statistic Q wnder the H, and H,, respectively. From different
perspective, f can be considered as the observed result’s degree of deviation from the
condition stated through H; and therefore is a function of the statistical test’s corresponding
effect size. From Eq. 1, we can show that:

__ A 2
Ty (2)

Therefore, if the parameter A and its corresponding effect size are estimated, then Eq. 2
can be used to calculate the mimmum sample size required, at a significance level ¢ and
power, for the chi-square test of independence.

Power Analysis
Generally Power Analysis is Used to Determine

¢ The minimum sample size n required to implement statistical test to detect an effect as
statistically significant at a significance level « and power

*  The power of a statistical test, given the sample size, the level of significance and the
observed effect size
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The first task is known as a priori approach to power analysis while the second is the
post-hoc approach to power analysis. Therefore post-hoc power analysis of a statistical test
obtains the power while a prior1 power analysis determines the sample size required to detect
a true sigmficant effect for a test.
Using the type TI error which is estimated as follows:

B= P(Q < X(ZH)(H),u /Hy- true) = P(?Cic(x—l)(c—na) < X(Exfn(c—n,a)

where, ’,e..(A) 1 the value of the no-central y’distribution with parameter A and (r-1)(c-1)
degrees of freedom. The power of the Chi-square test 1s then:

power =1-f= P(xfm(r—l)(c—lj (A) 2 x(zr—l)(c—l),c:)

Tn order to estimate the power, it is necessary to have an estimate of the parameter A.
According to Cohen (1988):

ho=nw? (3)

where, n is the sample size and w is an estimate of the effect size given as:

It can be easily shown that:

Therefore, w* = Q/n, this implies that the non-centrality parameter 4. We can then obtain
the power as:

power = P(?Cic(x—n(c—n Q= X(Exfn(c—n,a)

Effect Size

Tt is possible to make an a priori calculation of the minimum sample size required, when
an estimate of the non-centrality parameter & and effect size are given. Using Eq. 3n = A/w’.
For the y* distribution, the values of non-centrality A(w, (5, df) that correspond to significance
level &, power (1-B) with degrees of freedom df, can be found in tables (Haynam et al., 1970;
Pearson and Hartley, 1972) or can be calculated using relevant software. The only problem
lies in providing a predetermined estimate of effect size that 1s significance within the
framework of the hypothesis.

The determination of effect size could be achieved either through pilot research project
or from previous related studies on the same research subject. Cohen’s convention can also
be used in relation to what can be considered as a small, medium, or large effect size witlhun
the framework of Pearson Chi-square test of independence (Table 1).
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Table 1: Cohen’s convention of classification of effect size

Effect size Classification
Small w=10.10
Medium 1.0<w<0.30
Large 0.30<w=0.50

Table 2: Epidemiological data on 535 children

Race
Risk Black White Others
Atrisk 185 140 o0
Not at risk 80 17 23

Power and Sample Size Determination

Table 2 shows the epidemiological data on 535 children as contained in Nelson ef al.
(2005). The children were cross-classified according to their race {Black, White and Others}
and risk of becoming obesity. Based on Table 2, we want to test whether race of the children
1s independent of bemng at risk of becoming obesity or not.

The test statistic:

where, Q 18 chi-square distributed with 2 degrees of freedom. The above test can be
performed using R-language as follows:

X = matrix (¢ (185, 80, 140, 17, 90, 23), ncol=3)

chisq.test (x, correct = FALSE)

The following summary statistics were obtamed as:

Q=21.5%47, df=2, p-value=0.000, n=>535

With p-value of 0.000, we can therefore conclude that there exist relationship between
the race of a child and risk of becoming/developing obesity at (.05 level of significance. The
reliability of the above conclusion can be verified with computation of the power of the test
through power analysis. As discussed earlier, the power of a chi-square test depends on its
non-centrality parameter Q. The power of a test is the right tail probability under the
alternative hypothesis characterized by Q (Bergerud and Sit, 1992). The power can be
obtained with the same R-language as follows:

¢ = qchisq(l-a, df)
power = L-chisq(c, df, Q)

At ¢ = 0.05, the power of the above test is 0.9905. The interpretation is that, if race and
risk of becoming obesity were indeed related to the extent suggested by the data in Table 2,
the test would be able to detect that 99.05% of the time. The high power so obtained makes
the conclusion to be more reliable.
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Table 3: Computed power values for different sample (n) and effect sizes (w) and when degrees of freedom, df =2
Power

Sample size (n) w=10.10 w = 0.2009 w=0.30
100 0.1327 0.4187 0.7706
150 0.1783 0.5881 0.9186
200 0.2255 0.7217 0.9745
250 0.2735 0.8191 0.9927
300 0.3215 0.8861 0.9988
350 0.3690 0.9302 0.9995
400 0.4154 0.9583 0.9999
450 0.4604 0.9756 0.9999
500 0.5037 0.9859 1.0000

Table 4: Modified epidemiological data on 535 children presented in Table 2

Race
Risk Black Non-black
At risk 185 230
Not at risk 80 40

The high value of power in the test is as a result of high value of the non-centrality
parameter (Q) and sample size (n). Using the Cohen’s classification of effect size, which is a
function of non-centrality parameter and sample size. The above test gives effect size
w = 0.2009 which is classified as medium according to Cohen (1988). For this effect size,
power was calculated for different sample sizes of 100, 150, 200, 250, 300, 350, 400, 450 and
500. Likewise, for the same set of sample sizes, the effect sizes of 0.10 (small effect) and
0.30 (large effect) were used to obtain the power values and the results were presented in
Table 3.

The degrees of freedom for chi-square test for the data in Table 2 was modified by
collapsing two categories (white and others) as non-black and the modified table is
presented in Table 4. The same hypothesis is tested and the test statistic and the p-value
were obtained.

Q=181677, df=1, p-value=0.000, n=>535

The same conclusion of relationship between race and risk of becoming obesity 1s
established. At ¢ = 0.05, the power of the test is 0.9893 though with effect size w = 0.1843.
Table 5 gives the computed power for different sample sizes for thus effect size and when
effect size is small (0.10) and large (0.30).

RESULTS AND DISCUSSION

The power of a test increases as the sample size increases irespective of the
non-centrality parameter value or effect size as shown in Tables 3 and 5 for the 2x3 and
22 contingency tables respectively. From Table 3 with degrees of freedom of 2, for small
effect size, sample size of more than 500 1s required to obtain power of 0.80 while sample sizes
of 250 and 150 are required to attain the same power for the same test with medium and large
effect sizes, respectively.

When the degree of freedom 1s 1 as shown in Table 5, the test attains igher power than
when the degree of freedom 15 2. For mstance, when for large effect size of 0.30 when the
degrees of freedom 1s 1, sample size 100 gave power value of 0.8508 while the same sample
size gave power value of 0.7706 when the degrees of freedom 15 2. Also for small effect size
(w = 0.10), when the degrees of freedom 1s 2, the power value 13 0.5037 for sample size of 500
while the same sample size gave 0.6088 when the degrees of freedom 15 1.
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Table 5: Computed power values for different sample (n) and effect sizes (w) when degree of freedom, df =1

Power
Sarnple size () w=10.10 w =0.1843 w=0.30
100 0.1701 0.4534 0.8508
150 0.2318 0.6168 0.9568
200 0.2930 0.7409 0.9888
250 0.3526 0.8299 0.9973
300 0.4100 0.8910 0.9994
350 0.4646 0.9316 0.9999
400 0.5160 0.9578 0.9999
450 0.5641 0.9743 0.1000
500 0.6088 0.9846 1.0000

CONCLUSION

In test of independence between two categorical variables, apart from the size of
non-centrality parameter (effect size) which determines the power and sample size of the
test, the number of categories of the variables also affect the sample size and the power of
the test.
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