Asian Journal of Mathematics and Statistics 3 (3): 166-178, 2010
ISSN 1994-5418 /DOQIL: 10.3923/ajms.2009.20.32
© 2010 Asian Network for Scientific Information

Conditional Dependence of Trivariate Generalized Pareto Distributions*
Diakarya Barro

Department of Academic, Laboratoire LANTBIO,
UFR-SEA, Université de Ouagadougou, Burkina Faso

Abstract: In this study we consider the dependence of the family of multivariate generalized
Pareto distributions under given conditions on lower dimensional margins. A new function
which describes this conditional dependence is built via Pickands dependence function. This
function provides a new characterization of the basic subfamilies of trivariate generalized
Pareto distributions.
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INTRODUCTION

Extreme Values Theory (EVT) is based on modelling and measuring events which occur with very
small probability. Mainly two methods have been developed in this theory: the block maxima method
(Beirlant ez af., 2005) and the Peacks-Over-Threshold (POT) approach (Coles, 2001; Resnick, 1987).
The block maxima method is interested to asymptotic behavior of the laws of the component-wise
maxima appropriately normalized under the condition that the univariate margins are independent and
identically distributed (iid). This method shows that these asymptotic laws are the Multivariate
Extreme Value Distributions (MEVDs). Suggested originally by hydrologists, the POT approach is
rather based on modelling of exceedances of a random sample over a large threshold within a time
period.

Earlier studies have developed statistical structures to describe the dependence of the multivariate
distributions arising from these two approaches. In many latest books and reviews on the topic
(Beirlant et af., 2005; Gaume, 2005), it has been shown that no single parametric family can summary
the MEVDs like does do the Generalized Extreme Value (GEV) family in the univariate EVT.
Nevertheless, if the univariate marging are given the dependence of these distributions can be
charactenized by equivalent measures like Pickands dependence function, exponent measure or stable
tail dependence function (Degen, 2006). Furthermore, Tajvidi has shown (Tajvidi, 1996) that for a
sample of tandom vectors {X :n=1}= {(anl,___,xnlm);m = 1} the law H of the exceedances over a large
threshold is the multivariate Generalized Pareto Distribution (GPD). Moreover, this excess distribution
H is linked to the asymptotic component-wise maxima model G of the same sample by Eq. 1:

G{x)

-l
HE) G(min(x,0)

" TogG(0)

log

) X =(X,,...x,)eIR" oy
R

The aim and particularity of this study is to build a new structure which describes the dependence
of multivariate GPDs but under given conditions made on the marginal distributions. This new
conditional dependence function enable us to characterize the basic parametric subfamilies of
three-dimensional GPDs.
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MATERIALS AND METHODS

In this study, we consider the following problem: Let consider a situation where
X = {(¥X,,...%X)in=1} is a random vector with a multivariate GPD function H and we are interested
to model a structure which describes both the dependence of H under the condition 3>x;,; and the
dependence of the survival function H of H under the condition X;<x,;; %,; and x;, being given
realizations of the complementary lower dimensional margins X, and X, of X. Therefore, it is desirable
to model the structure which gives at any realization x = (x,,....x,) of X the probability of the
discordances {X‘ =x, /X, »x, }and {X sx /X, SXDJ}. For this purpose Pickands dependence
function of a MEVD would be useful (Coles, 2001, Beirlant ef af., 2005). Let:

M, = (MM, )= [maX(X‘J ),...,maX(Xj,m)J

1£ign 1£itn

be the component-wise maxima of a random vector X, ,n=>1}= {(anl,___,xn_m Jim = 1} with univariate
iid variables and with distribution function F. A m-dimensional continuous and non-degenerate function
G is a MEVD if there exists vectors of normalizing sequences o,={(c.;....0, )= R" with
{o,,>0,1=jzm} and n, =) € IR™ such that (in component-wise algebraic notations), for
all x=0x,,...x, JeIR™:

M -
lim P[ 2 Ha o XJ = lim F* (o x+p,)= G(x) (2)
n—+m Gn n—rtoo

If Eq. 2 holds F is said to belong to the max-domain of attraction of G. Therefore, from the link
established between G and H by Eq. 1, we obtain, for all x = (x,....x JeIR®, the following
characterization:

H(x)=1+ {7%4 Y;(XJ}A nx). Yot (¥as) =1+ logQ(x) (3)

i=1

in IR™! such that:

m-1
A®= [ max(-q gy te-aa(1- 51 oo

Bt

venfying for te S, |, the condition:

m-1
max(tl,.__,tm_,,l— > t‘)g Al <1
i=1

L being the angular measure of H on S, (Beirlant ef al., 2005). In addition, the y, are defined by the
transformations:
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1

_ 5
v.(x)= {1 +E [L M H ,i=1..m; with x, = max(x, 0) (4
G,

i

where, nelR. &. e€IR and 60 are respectively the location, shape and scale parameters of the
univariate marging G, of G. The different values of the parameter & allow the GEV distribution defined
by:

1
- B
exp {H Q[HH itg =0
a3

i

GEV(x,)=G,(x,)= (5
exp{exp{[x‘cu‘] }} ifE, =0

to describe the three types of asymptotic extreme behavior such as:

cxp{-exp{[ il H} —A(x), ifE =0,%x IR
g

GEV,(x,) = exp{{l+g[xi —H H : } @, (x); 05> 0,%, >, {6)

S 5

1
—n )
exp —{—[uﬂ =W, X iFE < 0,5, <p,
. L

+ &

i

The laws A, @ and ¥ are from Gumbel, Fréchet and Weibull, respectively.
RESULTS
Here, the main three theorems of this study will be presented and proved.

Angular Distribution of Multivariate GPDs
The following theorem gives the angular distribution of a multivariate GPD.

Theorem 1
Let H be a multivariate GPD. Then, there exists a function L(.) defined on §,,, in IR™"' such as,
for all x =(x,,..., X, )eIR™

% K-t (8)

mo T m

th th

i=1 i=l i

Hx,,..., X,)=1+3-L

Morcover, if H is continuously differentiable of order m, the density functionl of L fulfills,
forall t=(t,,....t, )eS, ,, the equality:
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) n
_ (= @ a4 9
l(tl,...,tm_,)——[E t)j XWH(tll ,,,,, ) )

The function L{.) is the angular distribution of the multivariate GPD H.
Proof

Let ¥V be the exponent measure function of the distribution H with unit Fréchet margins
(Michel, 2006; Resnick, 1987). Therefore, for all x>0 we have:

X X

1 m

H(Xl,...,xm)=I—V[_—l,...,_—l] (10)

It is known that:

" m - (m+1)
8xf.ax V(X"""X“)z_{zx‘j X{“‘ﬁ m—} (an

‘Where:

—[m+1)
a -1 o % x
G (i,...,;‘): X, xl| 2L e
[6’){1...8){,“ ]"1 XX ;‘ Bx By

By taking:

We have:

Replacing 1¢t,,.. .t ) in Eq. 10 we see that Eq. 9 assertion holds.
For proving the following theorems we define a conditional dependence measure for the family
of multivariate distributions.

169



Asian J. Math. Star., 3 (3): 166-178, 2010

A Conditional Measure of a Multivariate Distribution
Let n, k be natural numbers such that {n>2:1 <k<n} and let N, be a given subset of k elements of
N ={1,...,n}, the sct of the first n natural numbers.

Definition 1
We define Ny -partition of a random vector X ={(X,,...,.3), nz2} (or the partition of X in the
direction of N,) by the pairwise vector 7 = ()”(N Xy ) as:
k k

C Ry (XX

- Nk k
is the k-dimensional marginal vector of X whose component indexes are ordered in the subset N,
- (X

. -
X5 ﬁk,l""’Xﬁk,n—k)

is the (n-k)-dimensional marginal vector of X whose component indexes are orderedin N, = Cj,
the complementary of N in N

k

Similarly, every realization x = (x,,..,%,) of ¥ can be decomposed into two parts
X= (iNk, S(Nk) where iNk = (XNk,I’.“’XNk,kj and iﬁk =[Xﬁk,1""’xﬁk,mk]

are, respectively realizations of vectors Xu, et Xn,. If H, Hw, and Hr, denote the distribution
functions of the random vectors X, Xn, and Xs, then for all realization x = (x,,....x.) of X we have

H, (£ = lim H(x)and Hg | X = lim H(x) where ¥° =[xy ;,...x" and %" =(X* X )
1,6 Nk) Py (=) L% - A (%) 1y By oo Sy ok , At R B ok
H i hif

x k Hy
are the upper endpoints of the functions Hy, and Xr,.

Definition 2

Given a Np-partiion X= {3 X5 )1<k<n} of X=(¥,. X we define the upper
N,-discordance degree of X as the conditional probability given for all x = (x,..., x,) eIR® by
&y, (x) :P(XNk > iNkfXﬁk =g ). Similarly, the lower N, -discordance degree of X is defined, for all
X = (%,...%,) in IR"by & (x) =P(X,, siNk/)"(ﬁk = %5).

The following definition characterizes the probability that one of the margins Xw, and X,
exceeds 1/2, while the values taken by the other are less than 1/2.

Definition 3

Given the distribution H of a multivariate random vector X = {(X,,...,X), nz 2} with umvariate
margins H, 1<i<n we define the upper N-median discordance degree of H by the real number denoted
by 8, a4 suchas: & , =& [(H(2)...H; (3))] where H " is quantile function of H,. Similarly, the

lower N-median discordance degree of H is defined by By, = B, [(H;l (L), 1] (1_))]

2 n \Z

Example 1
Let X = (X, X,, ¥;) be a trivariate random vector. Let’s consider N, = {1, 3}. The lower
N,-discordance degree of X is givenn for x = (%, X. X% € IR by

By, (%,%:.%,) =P (X €%, X, <x./X, > x,). Particularly, if H is a continuous distribution function of X
we verify easily that &, (x,%;,%,) = [H,5(x,,%,) - Hix,x5,%5) [H' (x,), while for N, = {1}, the upper
N,-median discordance degree is given by &} , =1-H[H] (), Hy' (). 1" (3) [Hz: [H' (), H' () [where
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Hy»0 and H, ;>0 are, respectively the distribution functions of the margins X, and (X, X;), H;'
being the inverse of the survival function of H;. Let’s suppose, in addition that:

1
Ho(x,,%,,%;) = exp{—[(—lnxl)e +(=Inx, ) + (—lnXB)S}e},9> 0

for all %, €]0,1] {distribution whose univariate margins are uniform on 0,1]), we check easily that, for
0=1/2weget:

. L f111Y
B o = B, [5,5,5 — 0.96875

The following result shows that the N-marginal distribution of a MEVD is also a MEVD.

Theorem 2

Suppose there exists a MEVD G describing the asymptotic behavior of the component-wise
maxima of X suitably normalized. Then, there exists a k-dimensional MEVD G, and a (n-k)-
dimensional MEVD G, associated, respectively to the component-wise maxima of the marginal
vectors Xw, and Xs,. Moreover G, and G, are the marginal distributions of G.

Proof

Leto,=(0y,...,0,)eIR™ 0,20 and p, = (u;...;0,) €IR™ be the vectors of normalizing sequences of
the component-wise maxima M, = (M,,....M,) associated to the MEVD G by previous Eq. 2. Then,
if

is the upper endpoint of marginal vector Xu,_, we have:

. . (M, -

lim  G(x,..x,)= lim |limP T i <X,
ot x_ oxt | BT [ s

B By e B

=lim| lim P[ngl;...;ugxn}

n—stm
1 cYn

(M, - M, -
= lim P[M <X1,Nk?---;M<Xk,Nkﬂ

—+
e O w, Oy,

=G, (Xl_Nk ,...,Xk:Nk)

Therefore, there exists two vectors of normalizing sequences ow, ={(oLu,,...,onw,) € IR*, 01,0
and pw, = (Ui ope ) € IR such as the marginal component-wise maxima My, = (M wy,.... M)
of M, converges to Gu, according to Eq. 2. Thereby G, is a MEVD with k vanables.

Similarly, we establish that G, also arses as the limiting distribution of the marginal
component-wise maxima Ms, = (Mis,,..., M, 5 linearly normalized with vectors of sequences
05y, ={(OLF,,....0sxm,) € IR* with ais, > 0, 1 <j<n-k and e, = (Uisg... Mes,) € IRYE
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A Conditional Dependence Function of a Multivariate GPD

Note that, in the above, each of the discordance degrees Bﬁk and &, of arandom vector X can
be obtained by functional transformations of the other. Therefore, the following characterizations will
be restricted to the upper &; which will be denoted by & in the simplest case 85 ie, k=1

Theorem 3
Let Gbe a MEVD with discordance degree &. Then, there exists a convex function D defined on
the unit simplex 8, , by:

8%, X, )= 1—exp {—iy}(x‘)}D my,(x,) ,...,yrx““"(xr“") (7
= ;}/1()(1) ;}/i(xx)

for all (x,....,x,) in IR" ; where the v,(x,) satisfy Eq. 4, fori=1,..., m.
D is called the discordance function of G or of'its corresponding GPD H.

Taking a MEVD with unit Gumbel margin, Gi(x)) = exp{-exp(-x;)}; x>0, the following corollary
characterizes the simplest upper median degree, 3 ..

Corollary
Let G be a MEVD with unit Gumbel. Then, the upper median discordande degree of G, denoted
by 3, isgivenby

Example 2
Let Gg, 01 be the logistic model of MEVD given for (x,, x,. x,)eIR* by

Ga(x,,xz,x3>=exp{—[yf(xl)+y3(x2)+y:(xz)jﬁ}

vi(x) satisfying Eq. 4. Tts discordance function is given, for all (t,, t,)eS, by

1

_[tg +(1—t2ﬂ9

E L

Da(tl,t2)=[tf+tg+(1—t1 —tg)a}

and the median discordance degree

8o, =1-(In2) 0

Particularly, for @ =2, we get 3, = 0.864.

Proof of Theorem 3
Let's suppose that, for i = 1,...,m, the univariate margins G, of the MEVD G have the generalized
form: G(x) = exp{-v(x)} where the v, (x)) satisfy Eq. 4. Therefore, for all {x,....x JeIR™;,

P(X. =x1<i<
S(xp,.x, ) =P(X > x/X £x1;2si3n):1—(]X’—J_n) (12)
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Thus, Gw being the joint distribution of the margin vector (3,,.... X)) of X, we have:

8%, X, ) =1-

Furthermore, due to theorem 1, the function Gy, is a k-dimensional extreme value distribution.
Therefore, if A and A% are the Pickands dependence functions of G and Gr, respectively, then, in
Eq. 12 we have:

G(xl,...,x ) m . . w y -
R =y - VA A | T2 Ve
G () ST e A g

R N >V 2

i=1 i=1 i=2 i=2

Furthermore, we have:

¥

m

ZYi

i=1

where t, =

£]0,1[, for all j=2,..,m —1. Therefore, it follows that :

m

=exp _ZY‘D ¥ ’"’ym—l

m ®m

i >V 2w

i=1 i=1

where, D is the convex function such that 0< 1-t <1 and defined on the unit simplex

S, ., = {t =(tyesty ) E [0,1]’“’1;2'““1;1 gl}cIR’“"

i=1

by
t t,.
D= At ot )+ {1t ) Ay [—2 _____ m—‘]

for all te S, |. Particularly for the trivariate case, we have:

Dit,. t,) = Aft,t, 1+t A.Nl[li—zt]

1

defined on S,.
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APPLICATION TO THE TRIVARTIATE MODELS OF GPDs
The logistic model is the most important family of multivariate GPDs.

The Family of Trivariate GPD of Logistic Type

Let X =(¥X,, X,, X;) be a trivariate random vector with a parametric distribution Hg, 0>1. The
above Eg. 3 enable us to characterize Hg by its discordance function D, via its Pickands dependence
function A, (Michel, 2006).

Definition 4
The trivariate parametric function Hy is a MGPD of Logistic Type if Hy has, for all (x,, %,, x;)eIR®
the representation:

fzyi(xi)}n BICINSACAN

-] 3 3
2y(x) Zvix)
With the y,(x) satisfying Eq. 4 and where the discordance function Dy of Hy is given for all:

1

L L
(t.t,) S, by Dy(t,t,)= [tf e (11, —tzﬂe —[tg +(1—t2ﬂe

We give here three basic trivariate GPDs of Logistic Type (Joe, 1997; Hiisler and Reiss, 1989)
and we build their discordance functions:

¢ The trivariate family of GPD of Logistic Type of Gumbel

1

He(xl,xz,x3):1+{—[yf(xl)+y2(x2)+ y?(xB)]E}, for (x,,%,.%;)<IR* and 0>1, we have

1 L
De(tl,tz):[tf’+t§+(l—t1 7t2)9]9 —[t§’+(1—t2)9}e, for all (t,,t,)e8,

Particularly if 6—1~ we obtain the trivariate Pareto independent model H{x,, x,, X,)=1+{-v,(x,}
v, (X HyHis) [} with D(E, 1) = 2-t, for (8, t,)eS,

¢ The trivariate family of GPD of Logistic Type of Galambos

g
HB(XI,XE,Xg):1+ [[ylel er;)l +y§1},(y1’9192 +}/;’192 +y39192)92]

(x,.x,.%;)IR? and 0, 21, 8, 21. We have, for all (t,t,) e85,

1

1
~ PPN Y . ~ =T
Dy (bt} = {t? Hi-) - (7 1 (- s‘sz)ﬂ + {[tf‘ B A Ll B R o R B I 2 '

«  The trivariate family of GPD of Logistic Type of Hiisler-Réiss
The GPD which describes the behavior of the exceedances of the trivariate normal distribution
over a large threshold is given for (%, x,. x,)€IR?, 8 = (8, 8,, 8,) by:
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Hel,az,e3 (X1’X2=X3) :1+{*[Y1 +¥,; +Y3}

1 9 1 0
+y,| @ —+—‘10g[—‘}}+®[—+—310g[—1D
l [91 2 Y2 B 2 bE

where, @ notes the distribution finction of the standard normal law and @,{.,.,p), the survival function
of the bivariate normal distribution function with covariance matrix:

S E R
el 82 93
SENEEEE R
el 82 93
Thus, for all (t,, t,) the corresponding discordance function is:
o] i+ilog L iJrilog b
o 2 |t 9, 2 “l1-t -t
@ iJrilog Lo L+ilog 2
o 2 “ly o, 2 “l1-t -t

P~ p(enepez):

where, R(t,. t,, 0) is an integral rest defined for all (t,, t,)eS,.

The Family of Trivariate GPD of Nested Type

The Nested Logistic Tvpe is an asymmetric subfamily of logistic model. It generalizes this model
to allow different degrees of dependence between the components of the underlying random vector.
For (%, X, xelR* and 8,, 8,1, define now, recursively the following norm

||X”el,92 =”(X1,X2,X3)Hel’ez =l x, )“a‘ %

%

where, |.||s 1s the usual 8-norm with the convention that the absolute value is taken if the norm does
not have an index (Joe, 1997; Michel, 2006).
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Definition 5
The distribution fimetion given, for all {x,, x,, x,)eIR?, by

Hy e, (%,%,%,) =1+ {_H(Yl (x,).%: (%:). % (XB))H 1

81,8, J

is called the generalized Pareto distribution of Nested logistic type.
The basic trivariate GPD of Nested Logistic Type is given, for 0, 0,21 by
1
]

kel &
H o (%5, %) =14 [[YTI (x)+y," (Xz)i|91 +y (Xs)} s (x %%, ) e IR

1
9

By
We have: D, o {1,.t;)= [(t?l 1, )W+(1—t1 —tg)%} ’ +t, -1 with (t,t;)es,.

The Family of Trivariate GPD of Asymmetric Logistic Type

The asymmetric distributions arise as the models which describe the asymptotic behavior of the
maxima of storms recorded at different locations along a coastline (Gaume, 2005). They generalize the
logistic model but does not include the nested logistic model from the previous section (Michel, 2006).

Definition 6

Let B be a non-empty subset of {1,2,3} and let Az 1 be arbitrary numbers for every C<=B with
|C]z2 and A, =1if |C|=1. Furthermore, letO<p <1 where, pc=0 ifI¢C and the side condition

Zp;,c =1

CcB

is fulfilled for i=1,2,3. Then the distribution function

st gl v |

is a generalized Pareto distribution of Asymmetric Logistic Type.

The basie trivariate GPDs of Asymmetric Logistic Type with their discordance functions follow

(Joe, 1997):

¢ The trivariate Asymmetric GPD of Logistic Type of Gumbel
1 1 =
— — 186,
Hel,a2 (%, %, %) =1+ {—[[Yﬁez +2 y:slez i|82 + [2762 Yzelsz + yglez }82 ] l }

For all (x,, X,, X,)eIR® and 6,, 6,>0 we have for all (t,, t,)eS,:

1

L L Ve
Dy, (t,t;)= [[tfle? S [ (g gy )0 Jel
1
-6, 98 8. 817 “
- 2 -
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. The trivariate Asymmetric GPD of Logistic Type of Galambos
1 L 1
- _ =L = - LN

Hy o )=1+ {—[[yf‘ Y+ yﬂ—[y, W2y ghy T4 }ez —[3@ 4% 4 0% y;lez}ezJ }

for (%, %, X )eIR* and 0, 0,>0. We have, for (t,1,), €S,

-1
a0, 8y, 88 Tar
Del,92 (tl,t2)=[t19‘ ‘*’tzel +(1_ t, —tz)el _|:t1 T+ 270, K 2:|82

1

1
S
— -ty 2" tj’lez}ezj _[[tjl +(1—t2)ﬂ—% P {1t a2t )T‘

DISCUSSION

The results of the study show that the dependence of all trivariate GDP, under given conditions
on the lower dimensional margins, is totally deseribed by its discordance function. These results are
similar to the characterizations of the multivariate GPDs developed by Tajvidi (1996) or to the
equivalent dependence measures for MEVDs (Resnick, 1987, Beirlant er al., 2005). But the
particularity of this study is the that the new measure and function describe the joint dependence under
any condition made on the support of a lower dimensional margin. Moreover, the applications of the
study determine clearly the three main subfamilies of the models of trivariate GPDs by characterizing
them by their discordance finction.

We found that the results conform to the solution of the problem considered earlier. This is seen
at all realisations x = (X,,....x,) of the random vector 3. We also note that the theorem 3 establishes a
link between the new dependence structure and the previous dependence measures via Pickands
dependence one.

CONCLUSION

In this research we have investigated about characterization of a conditional dependence of
multivariate families of generalized Pareto distributions. We have built a new measure and function
which describe this conditional dependence. Basic trivariate subfamilies of multivariate GPDs have
been characterized by this finction. Moreover, we have computed the expressions of this function for
the usual trivariate subfamilies of GPDs.
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