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Abstract: In this study, we introduces the idea of lacunary interpolation on
mhomogeneous by splines function (0, 2; 0, 1, 4) case. It has been shown that the
new sixtic spline mterpolation exist and uniquely for both cases. Convergence
analysis of the method is discussed and the estimate of error bounds of spline
interpolation to a function satisfying certain smoothness conditions and its
derivatives are derived.
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INTRODUCTION

In approximation theory, spline functions occupy m an important position having a
number of applications, in a variety of diverse fields of mathematics and engineering sciences
including differential equations, optimal control and nonlinear optimization. There are a great
mumber of techniques developed for various instances of this problem, such as polynomial
regression, wavelets and from the view poimnt of differential geometry, developable surfaces
are composed of general cylinders and cones (Kvasov, 2000, De Boor, 2001; Saeed and
Twamer, 2004; Sarfraz, 2008) studied the differences types for cardinal interpolation based on
a representation of the Fourier transform of the fundamental interpolation.

Meir and Sharma (1973) obtained the error bounds for lacunary interpolation of certain
functions by deficient quintic splines, also Saxena and Joshi (1980) studied the
inhomogeneous lacunary interpolation by quintic spline (0, 2; 0, 3) case. Iwamer (2001)
constructed a non-homogeneous interpolatory by sixtic spline with the third derivatives.
In this study, I shall consider the new lacunary interpolation by spline function case
(0, 2; 0,1, D to finding the error bounds and suitable assumptions with showed that this
spline are exist and unique and also we show that this type of construction of spline
functions which interpolates the lacunary data is useful in approximating complicate function
and their derivatives on the given interval.

CINSTRUCTION A LACUNARY INTERPOLATION BASED ON SIXITIC SPLINE

The object of this section 1s to obtain the existence, uniqueness and error bounds of
deficient spline mterpolating the lacunary data (0, 2; 0, 1, 4).

Let 8(x) € 8%, denote the class of sixtic splines S(x) on [0,1] such that
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e S(x)eC°[0,1]
* S3(x)1s a polynomial of degree six on each subinterval

{X,V—H},OSVSn—I (1)
n n

It can be verified that if P(x) 1s a sixtic on [0, 1] then:

P{x) = pl0)A, () + pUIA, () + A, () + p(0)A, () +p7(0)A, (x)
P LIA () +pP (DA, (0)

Where:

A x)= i(xﬁ 4’ + 55 - 6x+ 4

Ax)= i(ﬂ«l6 + 4%’ — 5%+ 6X)

A= %(xﬁ — 4% + 5% - 2%)

A(x)= é(—xﬁ +4x -5xt +4xt - 20 2
A,(x)= ﬁ(fuxﬁ +40x* - 65x* + 40x° - 6x)

A(x)= ﬁ(fl 1x® +40x° - 35x" + %)

A (x)= 4—;0(7)«16 —20%° +15%° - 2%)

For later references we have:
AU(O) =1, A1(0) =0, Az(o) =0, A3(0) =0, A4(0) =0, As(o) =0, As(o) =0

A D=0, A, D=0, A,H=0 A,Q=0 A,D=0 AD=0 AWL=0

e 3 3 | e | | , 1 en
MO =0 AD=2, A= A= A0 = A0 = A0 =
AN =0, A'M=0, AN =1, A =0, A 1)=0, A, )=0, A, W)=0

and

A0 =0, AMO)=0, A,"0)=0, A0 =0, A0)=1, A0 =0, A"O)=0
A =0, A" =0, A" =0, AN =0, 4, =0, A, "D=1, A" =0

and

-13 -7 3
ALY =30, AP0 =-30, AP(0) =30, AL(0)=-15, A(;)(O):T, A )= - AW (0):1

AP D=0, APD=0, AP D=0, APD=0, AP D=0, AP D=0, APD=1

and
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AP (0 =-120, AP(0)=120, AT (0)=-120, AP (D) = 60, AT (0)=20, AP (O) = 20, AD(0)=-5

APy =60, AP =-60, AP =60, AL 1)=-30, AYD=-7, AP D) = -13, AS’(I):%

Further, a sixtic P(x) on [1, 2] can be written as:

P{x) = p(iC, (x) + p(2)C, (x) + p (DT, (x) + (2T, (x) + p"(NC, (x)
PIDIC ) +pP WIC, (0

Where:

C,(x) = %(7){6 +8%° —25x7 + 40%7 —40x7 + 26X -4 = A, (2— %)
C(x) = i(xﬁ —8x" +25x* —40x%° +40x7 - 26x+8) = A, (2-%)
Cz(x):i(—xﬁ +8x07 = 25x% +40%° —40x* +30x - 12) =—A,(2- %)
1 4 5 4 3 2 (3)
CE(X):g(fx +8x7 — 25x* + 40 - 367 +18x - = A, (2-x)
C,(x)= ﬁ(llxﬁ —92x" +295x" - 440x” + 280x" — 26x - 28) = A, (2- %)
C,(x) = %(9% —68%° +205x" — 320x° + 280x° —134x +28) = —A,(2— X}

C,(x)= 4—;0(%{6 —64%° + 235x" —440x” + 440x° - 2228+ 44D = A (2 - x)

Tt is easy to verify that a sixtic Q(x) on [0, 1] can be expressed in the following form:

Q(x) = q(0)By (x) + gLIB, (x) + g (LB, (x) + q"(0)B, (x) + ¢ (B, (x) 4)
g™ (0)B; (x) + 4 (DB, (x)

Where:

B, (x) = %(XE C3x42)
B,(x) = %(ﬂf 13%)
B,(x) = %(XB —x)
B,(x) = i(ij +2x% —x) (3
B,(x)= %(2){4 -3%% +2x)
_L g 5_ 4 3_
Bj(x)fno( X"+ 6x7 -15x" +13x" - 3x)

1
B, () =—(x° —15x* +20x° — 6%
s (%) 720( )
for later references we have:
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=2 B =2 B.OI= L Broy=—L B roy=L B0 =L B o-_L
B,'(0y= . B, (0)—2= B,'0)= 2=B3 (™= . B, (0)—48, B; (0)—240= B, (0)—120
B,{1)=0, BDH=0, B,{I)=1, B/'1=0, B,1=0, B/DH=0, B, 1U=0

"oy = o) = 3. B."0) = o) = — 3. B."O) = — B."0)= 2 B "0y L
B,"(0)=3, B,"(0)=-3, B,"(0)=3, B,"(0)=-3B,"0)= s’B’ {0 170" B, "(©) p

w1y = "ly= 3. B."1)= M= -3 BN =2, B ——. BRIyt
By"1)=3, B,"(J=-3, B,"1)=3, B;")=-3.B, (1)—8, B, "(1) 30" B, "(1) 5
BP0y=0, BP(0)=0, BY(0)=0, BPm=0 BYm-=L Bg“)(O):%l, B;“)(O):%l
B’ =0, BPM=0, BPW=0 BP®=0 BYL=L BPL=1 BIL=0
BP(0)=1, BO0)=0, BP{=0, BO=1

Alsoasixtic Q(x) on [1, 2] can be written as:
Q(x) = q()D, (x) +q(2)D, (x) + VD, (x) + (2D, (x) + ¢ (LD, (x) (6)
4D (x) + g7 (2D (x)
Where:

DD(X):%(XEfSXE+9X72):BD(27X)

Dl(x):%(—x3+6xg—9x+4):B1(2—x)

Dz(x):%(x3—6x2+11x—6):—B2(2—x)

DE(X):i(Xzfilxz+5X72):B3(27X) (7

D,(x)= %(ZX“ —-13x" +30x* - 29x +10) =B,(2 - x)
D,(x) :%(—xﬁ +12%° —45x* + 60%° - 54x + 28) =-B,(2- %)

Dﬁ(x):%(x5 —6x" +15x* —27x" +42x7 -39x + 14 = -B,(2-x)

THE APPROXIMATION OF THE SPLINE FUNCTIONS

Descriptions of the method: Let (S,, C°) be the class of spline functions with respect to
the set of knots x;. The spline functions will denoted by S,(x), where i =0, 1,..., n. We shall
prove the following:

Theorem 1 (Existence and Uniqueness)
For every odd integer n and for every set of 5n+9/2 real numbers

.ol 7, 4 4 r (G 4 M. pr ’
VAR OIS o SO e KNS SANE RIS LI S TNE T o i¢

there exists a unique S(x) € S, ; such that:
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s =f, v=o1.. Ak
n

s hor 0 veon. D
n w4l

s’(l—") -t v=01.. (“T*I) (8)
2v +1 n-1

s“>( y=f%,, v=0L..,(—)

S0y = f;“, S'Q=fr

Theorem 2
Let feC*[0,1] and n an odd integer. then the unique sixtic spline S,(x) satisfying
conditions of Theorem 3.1, with £, = f{v/n), v =0,1,... n;

f;m:f’(ﬂ),v:o,L...,“T’l;f;: Ay y-o1,. T o =gV ..“_21ands'(0) £,8MW=1
n n

we have:
2:;29 (1 h)+ h6 “|If | where r=4,5
87 (x)-£2x) I,
s%h w (£, h)+ hﬁ'uf@ I where r=01,2 3

Proof of Theorem 1

For a given S(x)e S¥,; set h = n™', M, = 8% (vht), v=0,1,....,n-1, Nv = 8% (vh-),
v=0,1,....n Since, 39 is linear in each internal (vh, (v+1)h), it is completely determined by
the (2n) constants {M,}:0 and {N.}i., . Also, if S(x) satisfies the requirements of Theorem 1
that for 2vhe<x < (2v+1)h, v = 0,1,..., n-1/2 , it must have the following form:

S =1, A, (x 2vh)+f2v+1 (x 2Vh)+hf;er1 (x 2vh)+h £ (x 2Vh) ©
hon,, A, 2"}‘)+ BN, A, 2""‘) g, A, " hz"h)
and for (2v+1)h < x < (2v+2)h, v=0.1,...., n-3/2, S(x) has the form:
2v+2h - —(2v+ 2)h 2v—-2)h -
800 =, A TR g, A B g g g R,
Wt A, (M) -b°M,,, A, (M)‘F BN, A, (%).,_ (10)

2v+ Dh—x
N

We shall show that it is possible to determine the (2n) parameters (M}, and N},
such that the function S(x) given by Eq. 9 and 10 will also satisfy (5) in Theorem 1 and §' (x),
S"(x) and S® will be continuous on [0,1]. S(x) is continuous because of the interpolating
condition Eq. & in Theorem 1, 8'(x) and $*(x) are continucus on [0,1] except at the points
(2vh) and (2v+1)h, respectively, v=10,1,... ,n-1/2.
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From Eq. 10 we see that Eq. 8 in Theorem 1 is equivalent to:

h*

5
M, + N, = = {6f, — 6T, + 6hf, - 3h%E + 1L f,§4>+%f§5>} (11)

o 1
h3

M, , +13N, = [ {60f, , — 60f, + 60hE. — 30h*f”, + %h“f}f’ ~hE) (12)

Simple calculations show that S"((2v+2)h-) = S"((2v+2)ht+) and SV((2v+2)h+) are
equivalent to:

60 , ”
SNE 42 + 17M2v+1 = h_3(7f2v+2 f2v+l hf v+l) ( 2v+3 +— f2v+2)+ fE(:?t—E (1 3)
h?
?(Mzwz + Niva) + (7N2v+2 1M, )=y —Gop + 265 +
(14)

2

. o b .
2hf2v+2 + hf2v+1 + 7(2f2v+3 - f2v+2) - E(l sz(?»fz + Hfz(?»fl)

Similarly 8'((2v +Dh-) = 8(Q2v +Dh+) and $P((2v + Dh+) = $2(Q2v+Dh-), v=0,1,...,n-3/2 are
equivalent to:

17M2V+5N2V+lf 0oty £, + ) - <M+ f2V>+ B gco (15)

2v+l

1 1 60
_2(7M2v +20N;,,5)+ _2(13N2v+1 +20M,,,) = _5(f2v oy — 2600+ (16)
60 30 o e

O a8 =) S QAL+ + 188, 1082,

Thus, the theorem will be established if we show that the system of linear Eq. 12-16 has
a unique solution. This end will be achieved by showing that the homogeneous system
corresponding to Eq. 12-16 has only zero solution.

The following is the homogeneous system of equations for v=0.1,..., n-3/2:

(20N,_, +TM,.) + (20M,,,, +13N,,,) =0 (17)
17M, + 5N, =0 (18)

(20M,,, +11N,_ )+ (20N, ,+7M, ) =0 (19)
TN, +13M,,, =0 (20)

M, +N, =0 (21)

™M, +13N_ =0 (22)
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Form Eq. 19 and 20 we have forv=10,1,..., n-3/2:

17M, , +5N, , =0

1IN, +20M_, +7M,_, +20N_ =0 (23)

Putting the values and M, = -13/7 N, from Eq. 19 in 20 we have:

1IN, +7M,_, —%Nn =0 (24)
Also, from Eq. 14 and 20 we have:
20N, +20M, , + %NM =0 (25)

and M; = -N, from Eq. 21
Using Eq. 19 we obtain 17M_+5N,, and using Eq. 21 with 25 and 24 we have
M,,=N,,=M_=N,, =0 Also obtain the system:

186N, + 340N, ., +340M,,., =0

120N, +143N,,,, + 91M,,,, = 0 forv=0,1 “—;2
40800N,_, +17680N,,, —16926N, =0
By the same mammer we getM; =M, = ... =M, = Oand N=N,=N,=... =N, =0,

(Saxena and Joshi, 1980; Jwamer, 2001), to solution of the homogeneous system for n = 4p
and n = 4p+2.

This completes the proof of the Theorem 1.

For the proof of Theorem 2, we shall need the following lemmas:

Lemma 1l
Let f € C[0,1], n any odd integer and h = n", then for S,(x) = 8,(f, x) of theorem 2, we
have

|8 vy - £ v < %mw (F©:h)

and

(3) _ £ E 3 (6).
Hsn (2vh) - f (th)HS 42hw(f )

Proof
Since, S(x) is sixtic in 2vh< x< (2v+1 )h, we easily obtain from Eq.

'8 (2vh) = £, AFY (0) + £, AP (0) + hf7, AP (0) + hF3 ALY (0) + (26)
W8P (2vh) AD (0) + PSP {(2v + D) AP (0) + h*f, P AL (©)

e+l
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Similarly from Eq. 10, since S(x) is sixtic in (2v+1)h< x< (2v+2)h:

WSS (2v+ 2h) = —f,, AP 0) —f,,, ASP(0) + hi], , A® 0) —h*f7,_ AL (0)+ 27)

h*S2 ((2v+ DAY (0 +h*SP ((2v+ 2h) AP (0) —h*f, AL ()

v+

e+l

Wnting v+1 for v in Eq. 26 and subtracting from Eq. 27 we have forv = 0,1,2,... ,(n-3)/2
we obtain:

hBAgj) (0) [SS) {(2v+3)h) - Sf) ((Zv+1h)]= _Agj) (] S P b A?) (O eus + o]+

hAS (O, 17,51 - 20 L AP (O - W AP OE, . +£,, ]
Setting
A, =8P(vh)— 1 for v=0,12,..,n (28)
hEA?) (0)[A2v+3 - A2v+1 ] = 7A55) (0) [f2v+1 + f2v+2 ] - A?) (0) [fz wat f2v+2 ] + hAgjj (0)[f2’v+1 - f2’v+3] -
thfz”w-zA;j) (0) - h4A'(55) (0)[f2v+1(4) + f2v+3(4) ]7 th?) (0)[f2(?+3 7f2(?+1 ]
we have from Eq. 28:
20h3(A2v+l - A2v+3) = ’240f2v+2 + 120(f2v+1 + f2v+3) - 120h(2f2’v+3 - f2’v+1) +
120h2f2’v+2 + 20h3 (fzmwz - fzmvﬂ) - 5h4 (fz(i)»fl + fg(a-z)
Then using Taylor's expansions, we have:
3 h’ (&) 32 0] 6E(6)
20h (A2v+1 - A‘2v+3) =——f (nl 2v) +—hf (nz 2v) -3t (113 2v)+
30 T ’ ' 29)
80
Shef@ My + ?hﬁf@ (M5 20— 10h*f© (M5 3}
or
h3
200A,,,, — Ay s)= ?[7f® (Th,zv) +32h°F® (nz,zv) - 96}161’(6)(113,29 + (30)

15h°F (n, , 3+ 80h*F® (n, , ) —30h°F® (n )]

Fix k, O< k< n-3/2. On summing both sides of Eq . 30 for v =k, k+1,..., n-3/2 and using the fact
that A, =0 (ie, A = 8"{1)-" = Osince 8' (0) = £, ) we have

n-3
2 3 (-2

208 A= Al = 3 FEO0+ 3O, ) - 960E O (1,04
= v=k

15h°F® (n, ;) + 80h*F® (0, ;3 - 30h°F® (n, , )]
2045 =2 W WEOiR)

Thus
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Thus| A, , |< %h?w Ry, ve 0.1,..,"—;1

This completes the proof of lemma 1.
To proof of second part lemmal, since S(x) 1s sixtic m 2vhe x< (2v+1)h, we easily obtamn from
Eq. 10

WS? (2v+1h) =, AP+ £, AP (1 + bf; L AP Q)+ hfS AP (1) + (31)
WS (2vi) AY () + B8P ((2v + D AP (D + h°F, P AP D)
similarly from Eq. 10, since S(x) is sixtic in 2vh<x<(2v+1 )h:
W'SP (2v+1h) = £, AP+, L AP (1) - b AP D +hE AP (1 - (32)

RSP (2v+ DAY (1) -’ SP(ev+ AP 1+ hE, |, AP D

v
v=0,1,..n-1/2.
writing (v+1) for v in (31) and subtracting from (32), we have forv=0,1,..., n-3/2.

AP (DISD (2vhy + S2(2v + D] = AP DL, - 5.1+ AP O, —Fron ]
2hf]  AS ) + 0P AT (DI, — £5,1- 2078202y + Dy AT (1)

or

AP DA, + A, 1= AP OIL,,., -, 1+ AP DIL, . - £, 1-2hf] AT (L+

h*AL I, - £,]-20°A, AP O -WP AP OF, - AP I + £

w+2

2w+l vl v

and using equation (2.2), to obtain:

—Th[A,,., — Ay, 1= 60(F, + £,.,,)—120f,,,, — 30h%(£7, +£7 ) +14h*, +17h%er, — 767 (33)

v+l

Then using Taylor's expansions, we have:

T A = A =B @) OB )= 2000(8,) 900,04 269 q,),,

(34)
3
= %[nf@ {or,) — heF@ (B ) — 1200 T3 ) + 330°%(0,) + 56 (o, )]
n-2
Iz hﬁ (n-2)/2 (35)
T Y Ay, — Al= < > B2A® (0 ) - OB,y - 1200 (E,) +3300(0,) + 565 (g,)]
=k v=k

Fix m such thatm = 0, 2, ... .n-2/2. On summing both sides of (35) for v =1, Ie+2,..., n-2/2, we
have:

6 (n=2)/2
—-7h’[A,,]= < [320 (&) — h* TP (B,) - 120h°T ™ (8,) +336(0,) + 56 (9, )]
=k
h3 iz
A=y X B0, -hTOB,) 120K T(3,) 4330 (8,) + 561 (¢,)] (36)
“k
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Hencel A, | < - how(f®h), k=0, 2, ., "2
2 2

This completes the proof of Lemma (second part).
Lemma 2

Let £ € C°[0,1], n an add integer and h = n™". Then for S,(x) = S,(fx) of Theorem 1, we
have the following:

|59 vy - £ —431‘2‘5 Iw(f@:h), v= 0,1,...,“7_1 (37

| SO ((2v+ Dhy —£9, < %hw(f@;h), V=01, ; ! (38)

5176

Ny — M, |2
| 2v+l 2v+2| 35

hwiesh) +h e, v=o1,.. 02 (39)

Proof of Lemma 2
From Eq. 9forv =0, 1,..., n-1/2, we have:

—120hf]

v+

b’ (89 (2vh) -2y =-120f, +120f, ,, +G0h*f) + 200’ (8% (2vh) - £2)
+20h* (8% ((2v+ Dh) — £ 3+ 200°F5Y + 200°F52 — sh*'ffP, — w1

Then using Taylor's expansions in above equation we obtain:

é
h* (8% (2vh) —£9) = h?[f@ —609 42009 1569 1+

(QE] (Mmoar) (Muae)

20h*A,, + 20h°A

27+l

= A pswr®;hy 1 201°A, + 200°A
3

2v+l

Now using lemma 1, we have:

|59 (2vhy - £ 1< —43‘;5 hw (£ 1)

This proves Eq. 38.
We now prove Eq. 39, since S(x) 1s a sixtic in 2vh< x <{2v+1)h, we have from Eq. 9 and
10, forv=20,1,....n-1/2

+ 60hf;

v+

0 SO((2v + Dhy - £2

v

)= 60f,, — 60f.

et — 3007, - THLY - 130’
11
2

2wl

h*e, —hf, - Th'A,, -13h°A

2v+l

Then using Taylor's expansions in above equation we obtain:
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[
b (89 ((2v + 1yh) - £ 7?—2[ B0 refy 2600 43360 1260 1-7h’A, —13h°A

/T (M) (Ma.2e) () 2+l

- %hﬁw(f@;h) CHTREA, +130%A,,

Now using Lemma 1, we have:

|S@ (2v+ Dh) ~ 12 \< w(f@ h)

2+l

this proves Eq. 39.
Similarly from Eq. 9 and 10 arguing in the previous mamer we get.

IN

v+l

M, <2176 2w (E5h) + [

v+l ‘—

Thus the Lemma is proved.

Proof of Theorem 2
Let2vh < x < 2v+1)h,v=0,1, ...,n-1/2 from Eq. 9 we have:

590 =57 v AT TE) 50 v oA, B e, - M, B
Since,
S (2vh+) = Nypn — My, and AD(2V+ h- X) . AQ(X - 2Vh) -1
h h h
we have:
s (x)— i (x)= (S(a) (2vh+)— & (X))Ao(m) +(SC5) ((2v+Dh) - _f® () A (X 2Vh)
f(j)(X)AD(%) +EO(x )A1(X 2Vh)+ (N, ’sz)Az(X 2vh)

or
5900y £90)| <[5 2vh) - £ (x)“AD(%) +

|S@ ((2v+1)h) f@(x)‘ A (X 2Vh Ao((2v+111)h - X) N ‘f‘”(x)‘ X 2Vh

2vh
h‘szn 2v‘ A, (X AL )

Since, form (1) for 0 < x <1 we have:

221
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|40 =1

‘A1(X)‘Sé

A
‘ (X)‘ 100
Since,
=P+ (x - 2vhF @ (e, 2v)

where, 2vh<e, 2v<{(2v+] )h and |x-2vh|<h,
on using Lemma 2, Eq. 42 and 43, we have:

[sP00 - 19 ()] < 4345hw<f@ h)+764 3hW(f® h)+ h||f(ﬁ’“ 5176 21 LW (Eih)

or

27629

|s<” {(x)—f® (x)| hW(f@ h) t oo th@H

Which proves the Theorem 2, when 2vh < x < (2v+1)h and r =5.

The rest of the argument 1s the same and the theorem 1s proved forr = 5 and forr =

3,4 we proceed as follows:
If 2vh < x < (2v+1)h, then:

SO -9 x) = j SO -9 (Epdt +89 (2v+ Dh) - £52

(Zv+h
Since,
S9v+ DS =0

and if (2v+1)h < x < (2v+2)h, then:

S@(x)— O (x) = j (SD ¢t — O (1t + SO((2v + Dhy— FD

2v+2

v+zh

Hence m every case, 1e., x € [0,1], we have:

27629

|s<4)(x)—f<4)(x)\ h2W(f@ h)+ h Hf@H

The Theorem is proves for r = 4.
and for r = 3, If 2vh < x < (2v+1)h, then

§7(x) - (%) = j (S (1) — £ ()

2vh

222
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(43)

(44)
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and if (2v+1)h < x < (2v+2)h, then
") — £7(x) = j (89 (ty— £ (1)t

4062

|s® (x)— f@(x)\ h3 W h) +Too h3 Hf@ H

The Theorem is proves forr = 3.
and for r =2, Tf 2vh < x < (2v+1)h, then

80 - (%) = j (20— £ ()t

2v+lh

and if (2v+1)h < x < (2v+2)h, then

80 - (%) = j (20— £ ()t

2v+lh

Hence in every case i.e., x2[0,1 ] we have:

4062

\s@(x) f@(x)| h4W(f@ h)+ h Hf@H

Theorem is proves for r= 2.
Similarly for r=0, 1, we have:

4062

h’ W(f®;h) T h5 s

4062

IS(x) — f(x)] < hﬁ W h) +To0 hﬁ Hf‘ﬁ)H

This completes the proof of Theorem 2.

CONCLUSION

Two new constructions are present for determine the existence and uniqueness lacunary
mnterpolation using inhomogeneous spline, theoretical background for these inhomogeneous
splines proven in the class C°. Also best error bounds for certain combination formula based
on the values of the derivative of this spline at all consecutive points approximating function

are established.
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