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Abstract: In this study, full and subset one-diunensional autoregressive integrated
moving average bilinear models which are capable of achieving stationarity for all
non linear series are proposed and were compared to determine which of them
perform better. The parameters of the proposed models were estimated using
Newton-Raphson iterative method and an algorithm is proposed to eliminate
redundant parameters from the full models to have subset models. Akaike
Information Criterion (AIC) was used to determine the order of the model. To
determine the best model, the residual variance attached to the proposed full and
subset models were studied. In the fitted models different sample sizes were used
and the statistical properties of the derived estimates are investigated. Tt was found
that the residual variance attached to the full bilinear model was smaller than the
subset model and this was so because of the ntroduction of the d factor in our new
models which has made us to capture trend and seasonality in the data, which in
turn helps arrive at stationarity easily for any time series data set and at the same
time made the full model a better model.

Key words: Parameters, newton-raphson, residual variance, algorithm and
stationarity

INTRODUCTION

The bilinear time series models have attracted considerable attention during the last
yvears. They have found a variety of applications including those in economy, biology,
ecology, software interfailure, signal processing etc.

An overview of various models and their application can be found by Granger and
Anderson (1978), Pham and Tran (1981), Gabr and Rao (1981 ), Rao et al. (1983), Liu (1992),
Gonelaves et al. (2000), Shangodoyin and Ojo (2003), Wang and Wei (2004), Boonchai and
Eivind (2005), Bibi (2006), Doukhan et al. (2006), Drost et al. (2007), Usoro and Omekara
(2008). The bilinear modes studied by the above researchers could not achieve stationarity
for all nonlinear series. Rao et al. (1983) gave a set of sufficient conditions for the existence
of a strictly stationary stochastic process conforming to the following bilinear model:

i=1

B q T
X, = ZaiXH - Zch + {ZbMXL,k}:H +e¢,, denoted as BL (p, g, 1, 1)
h=l =1

where, p is the order of the autoregressive component, ¢ is the order of the moving average
component, r 18 the upper limit of the lag difference for the observed variable X in the bilinear
part of the model, 1 is the limit of the lag difference for the error part of the bilinear model,
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a,, a,,...,a, are the parameters of the autoregressive component, ¢, ¢,...,c, are the parameters
of the moving average component and by,........ . b ,are the parameters of the nonlinear
compenent and e, are independently and identically distributed as N(0, ).

In this study, we extend the work of Rao et al. (1983) to the proposed one-dimensional
autoregressive integrated moving average bilinear and subset bilinear models, which are
capable of achieving stationarity for all nonlinear series; this 1s an important improvement
over other bilimear time series models.

In addition, bilinear time series are characterized by too many parameters, some of
which are close to zero. In the proposed models, we address this problem by employing the
concept of subsetting. Subsetting helps remove these redundant parameters, thereby leading
to so-called subset bilinear models. Gabr and Rao (1981) worked on subset bilinear models
and tested all the subsets of the best order of the full bilinear model before selecting the best
subset. In this study, subsetting concept is introduced to the proposed one-dimensional
autoregressive integrated moving average bilinear model to determine its usefulness in
achieving a better model.

PROPOSED ONE-DIMENSIONAL BILINEAR TIME SERTES MODELS

We define one-dimensional autoregressive mtegrated moving average bilinear and
subset bilinear time series models as follows:

Model 1 (M1)

WBJX, = d(BIVEX, + 6(B)e, + {EbHXt_kjeH, denoted as BL (p, d, q, 1, 1)

k=l

X=Xy ot WX g6, — 08 — .m0, + (ZbHXH]eH (1)
k=l

$,.....0, are the parameters of the autoregressive compenent; 6,,...,0, are the parameters of
the associated error process; b ,........ ,b,, are the parameters of the non-linear component and
8(B) is the moving average operator. p is the order of the autoregressive component; q is the
order of the moving average process; rl is the order of the nonlinear component and
Y(B) = V' (B) is the generalized autoregressive operator. V* is the differencing operator and
d is the degree of consecutive differencing required to achieve stationarity.

Model 2 (M2)

1 z 1
X, = Ewdet_P‘_d - hz}etht_qh + Zlbfjlxt_rjet_l +e,, denoted as SBL(p, d, g, 1. I} (2)
- p=

i=1
where, p; is the order of subset autoregressive component; ¢, is the order of subset moving

average process and 1l is the order of subset nonlinear compenent.
In the models above, e,are independently and identically distributed as N(0, a2).
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The Vector form of BL. (p, d, q,r, 1)
It 1s convenient to study the properties of a process when the model is m the state space
form because of the Markovian nature of the model Akaike (1974).

Let
WY Y e Wy W
1 0 o ... 0 0
W=
Pxp 0 1 0 0 0
0 0 o ... 1 0
bll b21 b31 brl
=0 o0 o 0 |j=1
o 0 0 0 0
) 6. 8,
1 0 0 0
&=
g 0 1 0 0
0 0 1 0
and vectors
T
T =1,0,0,.....,0)
Ixp
and let
T
XK'= (XXX pua)
(Here T stands for the transpose of a matrix) t = .....-1, 0, 1,..... With this notation, we can

write the model (1) in the vector form as:
Kot =WX -Oe, +BX g +Ce, (3)
STATIONARITY AND CONVERGENCE OF BL (p, d.q, r, 1)

Here, we give a sufficient condition for the existence of strictly stationary process and
convergence conforming to the bilinear model (1). This we do through the following
theorern.

Theorem 1

Let {e, t € Z} be a sequence of 11.d. random variables defined on a probability space

¢,,¢; such that Ee, = 0 and

2 _ 2
Ee, =0, <o

Let C be any column vector with components ¢,, ¢, .... ¢, ¥ and B be two matrices of order
p*p and © be matrix of order gxq such that:
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pFRF+c{((OR®O+BR®B)-20®@B)=A<1

The series of random vectors

Eﬁ(‘}'— &, +Be,_,)Ce, ,

rzl =1

converges absolutely almost surely as well as in the mean for every fixed t in Z. Further, if

X, =Ce + ¥ [J(¥-@c,_ +Be_)Ce_, teZ

1 j=1

then for every t m 7, {X,, t € Z} 1s a strictly stationary process conforming to the bilinear
model:

X, = Px, -Oe, +BXt-1¢, +Cs, {4)
Conversely, if {X, te Z} is a strictly stationary process satisfying:
X, = Px, -0, +BXt-1¢,+Ce,
for every t n Z for some sequence {e, t € Z} of 1.1.d. random variables with Ee, = 0 and
Eel=c’ <o
and for some matrices ¥, ®, B, C of respective orders pxp, qxq, r=r and px1, with

PFRT+C({(@RO+BRB)-20®B)= k<l

then

X,=Ce,+ ¥ ¥~ e, +Be,)Ce,

=

for every tin Z.
Proof of theorem 1 is given in the Appendix.

Description of Algorithm for Fitting Proposed Full and Subset Bilinear Models
For the sake of simplicity, we will break the algorithm down into the following steps.

Step 1
Fit various order of autoregressive integrated moving average model of the form:

X=wX ety X t6-0¢ —...—-0¢
Step 2
Choose the model for which Akaike Information Criterion (ATC) is minimum among

various order fitted m step 1.
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Step 3
Fit possible subsets of chosen model in step 2 using 2%-1 subsets approach Haggan and
Oyeturyi (1980).

Step 4

Choose the model for which ATC is minimum among the fitted models in step 3 to have
the best subset model and this will form the 1mitial values.

Step 5
Fit various order of the proposed full bilinear model of the form

HmwX Tt X, 0 L Th X e .tb, X, & te,

t—p—d 1 1€ T t—r Vi1
and choose the model for which AIC is minimum
Step 6
Fit possible subsets of chosen model in step 3 using 2%-1 subsets approach

Shangodoyin and Ojo (2003).

Step 7
The model with the minimum ATC is the best subset proposed bilinear model.

Estimation of parameters of BL (p, d, q, r, 1)
The joint density function of (e, e,..,.......8,), Where m = max(r, 1), is given by:

1 1 &
(2m2)(n7m+1)f2 CXp(_zcz ;ef) (5)

Proceeding as in Rao (1981), the Jacobian of the transformation from (e, e.,....e.) to (X,
Koot a2 18 unity, the likelthood fimetion of (X, X ..., X} 1s the same as the joint density
function of (e, e 4y ..,e). Thus maximising the likelthood function is equivalent to
minimizing the function Q(G), which is as follows:

OB (©)
with respect to the parameter
G= (W Wy, 066,000, By s B

For convenience, we shall write G, =¥, G, = ¥,,......,Gy = B, where, R = p + q +1,. Then the
partial derivatives of Q(G) are given by

M,g v 9 G=12..R) (7)
ac, 'dG,

FUG) 2 b de, g

GG, Em dG dG 2,“ e dG) ®
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where, the partial derivatives of e, satisfy the recursive equations:

de, < de o
+ Y W (t -1, if i=0
a2 ©
=X, ifi=L2..p
de, < de,_ .
4+ MWL l=¢ ifi=12,.., (10)
) 121‘, (1) @ o q
s de
de, + YW de_J =-X_e., (k=12..nm=1) (11)
K1 i=1 k1
2 s d2
de, WO =06, = 1,2,..,p) (12)
dyrdy; 53 dyr,dy;
dle, & d’e, .
YW iog (i,i=0,1,2, .., (13)
do.de, ]21 0 ga0 0 O W
: : d’e,_, :
L+§‘IWJ(1;) i +XH<M:0 (i=01.2,..p:ki=1,2,..1, m, =1) 4
dy,dB, o dB,,d, dyy,
2 5 d2 2
Te. w20 yx,, Lom g o120 kimL2mm, = 1) (15)
de1dBk1 =t ! dBmde; de;
2 s d?
de, + YW, o (16)
dyde, S dyr,do,
2 s dZC ) 2
de, YW S4X de X, deLTm
dBkldBkl =1 dBkldBkl dBkl dBkl
(K. kK=12m..,r, mm' =1} (17

Wil)= ZB‘JXH
=

We assume thatet=0(t =1, 2, ..., m-1) and

2
o o 98 Gjo12.Rit=12,.m-1)
G, 4G,

From these assumptions and Eq. (11) it follows that the second order derivatives with
respectto W, (1=0,1,2, ...,pand 6,(1=0,1, 2, ..., q) are zero. For a given set of values {¥},
{6.} and {B,} one can evaluate the first and second order derivatives using the recursive
Eq. 9-11 and 17.

Let

dQ(@) dQ(@) dQ(G)
a6, " da, T da,

Vi =
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and let H(G) = [d*Q(G)/dG.dG] be a matrix of second partial derivatives. Expanding V(G), near
in a Taylor series, we obtain

[V(E}y, = 0= VIO +H(GG- )
Rewriting this equation and following Krzanowski (1998), we have
G-G=H (VG
thereby obtaining an iterative equation given by
Gl = G(k)_H—l(G(k))V(G(k))

where G is the set of estimates obtained at the kth stage of iteration. The estimates obtained
by the above iterative equations usually converge. For starting the iteration, we need to have
good sets of imtial values of the parameters. This can be obtamed as follows:

Suppose we wish to fit one-dimensional bilinear model BL(p, d, g, r, 1). We choose the
coefficients of the autoregressive mtegrated moving average models (ARIMA) part of this

model equal to the corresponding best subset ARTMA model. These coefficients are used
as the initial values for starting the iteration of the Newton-Raphson iterative equation.

Estimation of the Parameters of Subset Bilinear (p, d, q, r, 1)
Let us assume that the sets of integers, &Kok} {9954} and {@. 10,0, (r,.1}]

are fixed and known. Following Rao (1981), we can show that maximizing the likelihood
function of X, . X, u---Xx) 13 equivalent to mimimizing the function

A= e

t=m;

with respect to the parameters

Let G" =W, . Wy, Wy o i 81085 by b ) - For convenience, let us write

G =w,, Gy =y, Gy =, G = 0,G,, =0,,...,G
The partial derivatives of Q(G) are

dQiG oo de
Wi: SC(}‘)ZZEEL !

FQa) de,
h, = =2
17 4G,da, Zm dc,

t=m i
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where the partial derivatives satisfy the recursive equations

de, < de,_
=X, -3, X 5= r=123..0

dy, T ; Ay,

de, - de,

— =g, . -¥b.X 1 r=1,23,....1
a6, O ,21 550 e, { )
de, =X G Ebr 14y %
db,, S
In the calculation of these partial derivatives, we set & =& =..=¢€,,=0 and

oy _de, e g1 R)
G, dg, aa,

Let WT{G)=(W,W,,.., W) and H(G)=h,) to evaluate the second order partial derivatives, let

us approxumate
<[ de, ) de
h=2% S |

as is done in the Marquardt algorithm. Expanding W(G) near §=9 in a Taylor series, we
obtain 0= W(G)+H(GHG-C).

Rewriting this equation, we get (G-G)= HY(@W(G), thereby obtaining the
Newton-Raphson iterative equation:

QD — g H*I(G(k))w(G(k))

G = GE 1 G (GO (GD) (18)
where G% is the set of estimates obtained at the kth iteration.
NUMERICAL EXAMPLE: THE WOLFER SUNSPOT DATA

To present the application of the models proposed, we will use a real time series dataset,
the Wolfer sunspot, available in Box et al. (1994). The scientists track solar cycles by
counting sunspots-cool planet-sized areas on the Sun where intense magnetic loops poke
through the star’s visible surface. It was Rudolf Wolf who devised the basic formula for
calculating sunspots in 1848, these sunspot counts are still continued.

As the Wolfer sunspot data set represent a non-stationary series, the bilinear models
proposed in this paper may be applied. The Wolfer sunspot data set, available in Box et al.
(1994), in this study is considered at two different sample size of 150 and 250. For the fitted
model below we have used the algorithm and the estimation techmque i the previous
section.
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Table 1: Goodness of fit of one-dimensional full and subset autoregressive integrated bilinear models at sample sizes of
50, 150 and 250. Two models are compared, namely M1: BL (p, 1, g, r, 1), M2: SBL (p, 1, q, r, 1). All
models are significant at p<.0.001

Sample size of 150 Sample size of 250
Sarnple size
Model Full bilinear Subset bilinear Full bilinear Subset bilinear
Residual variance 198.2 211.4 256.70 258770
R2 0.60 00.57 0.60 0.59
F (Statistic) 30.03 64.48 58.26 69.40

Fitted Model M1and M2 at sample sizel 50

M1

Xt=021742%t -1 +0.172224%t — 3 - 0.518088%t — 4 - 0.218600X%t -5 —0.135334Xt - 6 —
0.269434Xt — 7 + 0.630377et—1 - 0.11913%t -2 - 0.763971et — 3 - 0.000351 Xt —let— 1 +
0.006676Xt—2et -1 -0.001134Xt - 3et -1 -0.011233Xt —4et — 1 — 0.003409Kt — Set— 1 +
0.002608%t — 6et —1 — 0.020809%t — 7et — 1 + 0.011283Xt —8et—1 + et

M2

Xt=-0.217421Xt — 1 + 0.172224Xt — 3 - 0.51R088Xt — 4 - 0.218600Xt — 5- 0.135334Xt — 6 —
0.269434Xt —7 + 0.630377et — 1 - 0.11913%t — 2 - 0.763971et — 3 - 0.012484Xt - det — 1 —
0.002564Xt - Set —1 + 0.005071Xt - 6et — 1 — 0.011200Xt - Tet— 1 + et

Fitted Model M1 and M2atsample size250

M1

Xt=-0712478Kt—1 - 0.153047%t — 2 +0.032479%t — 3 - 0.606080Xt - 4 —0.351330X1t- 5 —
0.422284%t— 6 - 0.407042X%t—7 - 0.311950Xt - 8 +0.809607et — 1 - 0.048903et— 2 - 0.673588et
-3-0.003340Xt - let -1 -0.008671Xt— 2et— 1 — 0.007744Kt — 3et—1 - 0.005649%t — det — 1
- 0.006420 Xt — Set - 1 —0.012716Xt — et - 1 - 0.006439Kt —Tet - 1 + et

M2

Xt =-0712478%t -1 - 0.153047Xt — 2 + 0.032479Xt — 3 - 0.606080%t —4- 0.351330Xt -5 —
0.422284Xt— 6 - 0.407042XKt — 7 - 0.311930Xt- 8 + 0.809607et — 1 - 0.048903et — 2 — 0.673588et
—3-0.003128Xt-let—1-0.007883Xt - Zet— 1 —0.009624Xt - 3et — 1 — 0.008877Xt- Set—1 -
0.013244Xt - Get — 1 — 0.004014Kt - Tet—1 +et

The fitted models’ residual variances, coefficient of determmation(R-squared) and
F-statistic are given in Table 1.

We could see the performance of the two models above using the residual variance
attached to each model. The residual variance of full bilinear model 1s smaller than that of
subset model. The proposed model gave us the best model at full model which is an
improvement. The usual convention is that the subset model is always better than the full
model. But in this proposed model, testing all subsets of the models is not necessary.

CONCLUSION

This study focused on new bilinear models that could handle all non-linear series.
Bilinear models at different levels of sample sizes were considered using the non-linear real
series. Full bilinear model emerged as the better model when compared with subset model.
And this is an improvement in the model proposed. Moreover, estimation of parameters
witnessed a unique, consistent and convergent estimator that has prevented the models from
exploding, thereby making stationarity possible. The introduction of the d factor in our new
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models has made us to capture trend and seasonality in the data, which in turn helps arrive
at stationarity easily for any time series data set and at same time made the full model a better
model.

APPENDIX

Proof of Theorem 1
Here we prove the theorem 1 from section 4. For the sake of simplicity, we will break the
proof down into the following steps.

Step 1
For almost sure convergence, we show that

<oo (A1)

YE
1zl

j=

[ﬁ (¥-ee, +Be, )Ce,, J

for every i=1, 2, ......,p. This implies that

Er'[l(‘{L ®e,_,+Be_)Ce,

wzl 17
is absolutely convergent almost surely as well as in the mean
Step 2
We establish (A.1) for i = 1. The general case is clear. First, we note that for every tin

Zorlands=1,2, ....p

E‘((‘P -®e,, +Be,,)Ce, )

<K,

where, KO is a constant that depends only on ¥, B, C and ¢°.

Step 3
If r 2, then

E L O

(ﬁ(w ~ @+ Bet_])Cet_rj
1

=l

for some constant K >0

Step 4
Now, foranys=1,2, ....,p

E < KIA(FI)M

{1"{ (F-6c, ,+ BcH)CeHJ
1

=

-1 i1
= ((E(\P_ e, +Be, ) ®(§1(\P_ Ge,_; +Be, My,

-1
= (¥ @+ Be, ) @(¥ - Oe, ;+Be, ),
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Consequently,

-1 2 -1
E[{Hl(‘P— Be,_;+ Bet_J)J } = I'II(E(‘P -8, +Be,_)®(T-0e,_;+Be,_ D,
i= ie i=
={(E[('' - ®¢, + Be,)® (¥ - &, + Be, )" ).,

“(E(YRF-¢03F+eBRFP+ef0RO-2c10RB+eBR Y+ BR®B)Y ™),

=(¥@¥+c’(O®e+BOB) - 2®®B))H)ls_,s
Sk}\'rl

Hence

E < Kl)\‘(x—l) ]

(Jnl (F- e+ BeH)CeHl

for a suitable choice of K.
Since, A<1, we have

EE < oo

rzl

[JHI (F-©e,_, +Be,_,)Ce,, J

foreveryi=1,2, ........p.
Thus (A1) 1s established.
It 15 obvious that the vector-valued stochastic process {X,, t € Z} defined by

X, =Ce,+ DIICF- 0, +Be, )Ce, , Le 7

szl

is strictly stationary. Thus p(¥ ® ¥+ o’ (@ ®®+B®B)-20®B))=4 <1 is a sufficient condition
for strictly stationary of the model 2.4 Hence the proof.
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