

Asian Journal of Mathematics & Statistics

ISSN 1994-5418

Subdirect Representations in A*-Algebras

¹J. Venkateswara Rao and ²P. Koteswara Rao ¹Department of Mathematics, Mekelle University, Mekelle, Ethiopia ²Department of Commerce, Nagarjuna University, Nagarjuna Nagar-522 510, A.P., India

Abstract: This study investigates about subdirect representations in A*-algebras. A natural A*-homomorphism f: $A \rightarrow 3 = \{0, 1, 2\}$ for an A*-algebra A is obtained. The foremost results of this study are every subdirectly irreducible A*-algebra A is isomorphic to 3 and every A*-algebra is a sub A*-algebra of a product of copies of 3.

Key words: A*-algebra, subdirectly irreducible A*-algebra, ada, C-algebra, Boolean algebra

INTRODUCTION

In this research, we investigate the subdirect representations in A^* -algebras as $3 = \{0, 1, 2\}$ is the only subdirectly irreducible A^* -algebra and every A^* -algebra is a sub A^* -algebra of product of copies of 3.

PRELIMINARIES

Definition 1

An algebra $(A, \wedge, \star, (-)\tilde{}, (-)_\pi, 1)$ is an A^* -algebra if it satisfies: For $a, b, c \in A$, (I) $a_\pi \vee (a_\pi)\tilde{} = 1, (a_\pi)_\pi = a_\pi$ where $a \vee b = (a^\circ \wedge b^\circ)\tilde{}, (ii)$ $a_\pi \vee b_\pi = b_\pi \vee a_\pi, (iii)$ $(a_\pi \vee b_\pi) \vee c_\pi = a_\pi \vee (b_\pi \vee c_\pi);$ (iv) $(a_\pi \wedge b_\pi) \vee (a_\pi \wedge (b_\pi)\tilde{}) = a_\pi, (v)$ $(a \wedge b)_\pi = a_\pi \wedge b_\pi, (a \wedge b)^\# = a^\# \vee b^\#$ where, $a^\# = (a_\pi \vee a^\circ_\pi)\tilde{}, (vi)$ $a^\circ_\pi = (a_\pi \vee a^\#)\tilde{}, a^{\ast\#} = a^\#, (vii)$ $(a \star b)_\pi = a_\pi, (a \star b)^\# = (a_\pi)^\circ \wedge (b^\circ_\pi)\tilde{}, (viii)$ a = b if and only if $a_\pi = b_\pi$, $a^\# = b^\#$.

Corresponding Author: J. Venkateswara Rao, Department of Mathematics, Mekelle University, Mekelle, Ethiopia

We write, 0 for 1^{\sim} , 2 for 0 * 1.

Example

 $3 = \{0, 1, 2\}$ with the operations defined below is an A*-algebra.

٨	0	1	2		v	0	1	2	_					x			
										0	0	2	2	x"	1	0	2
										1	1	1	1	x*	0	1	0
2	2	2	2	:	2	2	2	2		2	0	2	2	x#	0	0	1

Note

From 1.1 (I) to 1.1 (iv) and by Huntington's theorem (Birkhoff, 1948)) we see that, $B(A) = \{a_{\pi}/a \in A\}$ is a Boolean algebra with \land , \lor , $(-)^{\sim}$, 0 and a $\in B(A) \Rightarrow a_{\pi} = a$. Since, 1, 0, $(a_{\pi})^{\sim} \in B(A)$, we have $1_{\pi} = 1$, $0_{\pi} = 0$, $(a_{\pi})^{\sim}_{\pi} = (a_{\pi})^{\sim}$ and $a_{\pi} \land a^{\#} = 0$, a $* \circ 0 = a_{\pi}$.

Sub Direct Representations

Lemma 1

In every A*-algebra A (i) $x \land x = x$, (ii) $x \land (x^{\sim} \lor y) = x \land y$, (iii) $x \lor y = 0 \Rightarrow x = 0$, (iv) $x \lor y = 1 \Rightarrow x \lor x^{\sim} = 1$.

Proof

From 1.1 (viii) we have (i), (ii). (iii): $x = x \lor 0 = x \lor x \lor y = x \lor y = 0$. Therefore x = 0. (iv): $1 = x \lor y = x \lor (x^{\sim} \land y)$ (from dual of (ii)) = $(x \lor x^{\sim}) \land (x \lor y) = (x \lor x^{\sim}) \land 1 = x \lor x^{\sim}$. Therefore $x \lor x^{\sim} = 1$.

Definition 2

For
$$a \in A$$
, define $\theta_a = \{(x, y)/ a_\pi x_\pi = a_\pi y_\pi, a_\pi x^\# = a_\pi y^\# \}$

Lemma 2

 θ_a is a congruence relation on A.

Proof

Clearly, θ_a is an equivalence relation on A.

 $(x,y) \in \theta_a \Rightarrow a_\pi \ x_\pi = a_\pi \ y_\pi, \ a_\pi \ x^\# = a_\pi \ y^\# \Rightarrow a_\pi^- \lor \ x_\pi^- = a_\pi^- \lor \ y_\pi^- \Rightarrow a_\pi \land (a_\pi^- \lor \ x_\pi^-) = a_\pi \land (a_\pi^- \lor \ y_\pi^-) \Rightarrow (a_\pi^- \lor \ y_\pi^-) \Rightarrow a_\pi \land (a_\pi^- \lor \ y_\pi^-) \Rightarrow (a_\pi^- \lor \ y_\pi^-) \Rightarrow$

Similarly, $b\theta_a c \Rightarrow a_\pi b_\pi^- = a_\pi c_\pi^-$, $a_\pi b_\pi^- = a_\pi c_\pi^- a_\pi x_\pi^- b_\pi^- = a_\pi x_\pi^- a_\pi b_\pi^- = a_\pi y_\pi^- a_\pi c_\pi^- = a_\pi y_\pi^- a_\pi c_\pi^-$ Therefore, $a_\pi (x * b)^\# = a_\pi (y * c)^\#$ Hence, $(x * b)\theta_a (y * c)$. Therefore, θ_a is a congruence relation on A.

Lemma 3

$$\theta_\mathtt{a} \cap \theta_\mathtt{a\sim} = \theta_\mathtt{a \vee a\sim}$$

Notation

$$\Delta_{A} = \{(x, x) / x \in A\}$$

Lemma 4

$$\theta_a = \Delta_a \Leftrightarrow a = 1$$
.

Proof

 $a_\pi(a \wedge x)_\pi = a_\pi \wedge x_\pi. \ a_\pi(a \wedge x)^\# = a_\pi(a^\# \vee x^\#) = a_\pi x^\# \ \text{Therefore, } (a \wedge x, x) \in \theta_a \Rightarrow (a \wedge x, x) \in \Delta_A \Rightarrow a \wedge x = x \ \text{Therefore, } a \wedge x = x \ \text{for every } x \in A. \ \text{So, } a \wedge x = 1 \Rightarrow a = 1.$

Lemma 5

$$a \theta_{a} b, b \theta_{b} a \Rightarrow a = b$$

Proof

 $a = a \lor (a^{\sim} \land a) \text{ (from 1.1 (viii))} = a \lor (a^{\sim} \land b) = a \lor b \text{ (from 1.1 (viii))}.$ Similarly, $b = a \lor b$. Therefore, a = b.

Lemma 6

Let A be an A*-algebra with 0, 1 $(0 \neq 1)$. Suppose that for any $x \in A - \{0, 1\}$, $x \vee x^{\sim} \neq 1$. Define $f: A \neg 3 = \{0, 1, 2\}$ by f(1) = 1, f(0) = 0 and f(x) = 2 for all $x \neq 0$, 1. Then f is an A*-homomorphism.

Proof

To show that, $f(x^{\sim}) = (f(x))^{\sim}$ for all $x \in A$ For x = 0, 1, $f(x^{\sim}) = (f(x))^{\sim}$ Suppose, $x \neq 0, 1 \Rightarrow x^{\sim} \neq 0 \Rightarrow f(x^{\sim}) = 2$.

Since,
$$x \ne 0$$
, 1, $f(x) = 2 \Rightarrow (f(x))^{\sim} = 2$ Therefore, $f(x^{\sim}) = (f(x))^{\sim}$.

Claim

$$f(x \lor y) = f(x) \lor f(y)$$
, for all $x \in A$

Case (i)

For
$$x = 0$$
, $f(x \lor y) = f(x) \lor f(y)$, for all $y \in A$ is clear

Case (ii)

For
$$x = 1$$
, $f(x \lor y) = f(x) \lor f(y)$, for all $y \in A$

For, y = 0, 1 the result is clear. Suppose, $y \neq 0$, $1 \rightarrow x \lor y \neq 0$, 1. If $y \neq 0$, $1 \rightarrow x \lor y \neq 0$, 1. (Since, $(x \lor y) = 0 \rightarrow x = 0$, y = 0; $(x \lor y) = 1 \rightarrow y \lor y = 1$) So, $1 \lor y = 0$, 1. So, $f(1 \lor y) = 2 = 1 \lor 2 = f(1) \lor f(y)$ Therefore, $f(1 \lor y) = f(1) \lor f(y)$

Case (iii)

For
$$x \neq 0$$
, $1 \Rightarrow x \lor y \neq 0$, $1 f(x \lor y) = 2 = 2 \lor f(y) = f(x) \lor f(y)$.

Therefore, $f(x \lor y) = f(x) \lor f(y)$, for all $x \in A$. To prove that, $f(x_\pi) = (f(x))_\pi$ for all $x \in A$. If, $x \ne 0, 1$, it is clear. Suppose, $x \ne 0, 1$. Claim: $x_\pi = 0$ Since, $x \ne 0, 1, x \lor x^* \ne 1$. $x_\pi \lor x^*_\pi = 1 \Rightarrow x_\pi^* = x^*_\pi \Rightarrow x^\# = 0 \Rightarrow x = x_\pi x \lor x^*_\pi = x_\pi \lor x_\pi^* = 1$, a contradiction. Therefore, $x_\pi \lor x^*_\pi \ne 1$. Suppose, $x_\pi \lor x^*_\pi \ne 0 \Rightarrow x_\pi \lor x^*_\pi \ne 0$, $1 \cdot (x_\pi \lor x_\pi) \lor (x_\pi \lor x_\pi) \ne 1$, a contradiction. Therefore, $x_\pi \lor x_\pi = 0 \Rightarrow x_\pi = 0$ and $x^*_\pi = 0$ Since, $x_\pi = 0$, $f(x_\pi) = f(0) = 0 = 2_\pi = (f(x))_\pi$ Therefore, $f(x_\pi) = (f(x))_\pi$, for all $x \in A$.

Claim 1

 $f(x^{\#}) = (f(x))^{\#}, \text{ for all } x \in A \ f(x^{\#}) = f(x_{\pi} \vee x_{\pi}^{\sim})^{\sim} = [f(x_{\pi} \vee x_{\pi}^{\sim})]^{\sim} = [f(x_{\pi}) \vee f(x_{\pi}^{\sim})]^{\sim} = [(f(x))_{\pi} \vee (f(x_{\pi}^{\sim}))_{\pi}]^{\sim}$

=
$$[(f(x))_{\pi} \lor f(x)_{\pi}]^{\sim} = (f(x))^{\#}$$
 Therefore, $f(x^{\#}) = (f(x))^{\#}$ for all $x \in A$.

Claim 2

For all $x, y \in A$, f(x * y) = f(x) * f(y). $[f(x * y)]_{\pi} = f((x * y)_{\pi}) = f(x)_{\pi} = f(x)_{\pi}$ But, $[f(x) * f(y)]_{\pi} = [f(x)]_{\pi}$ Therefore, $f(x * y)_{\pi} = [f(x) * f(y)]_{\pi}$, for all $x, y \in A$. $f(x * y)^{\#} = f((x * y)^{\#}) = f(x_{\pi} \land y_{\pi}) = f(x_{\pi}) \land f(y_{\pi}) = f(x)_{\pi} \land f(y)_{\pi} = f(x)$

Definition 3

An algebra A is called subdirectly irreducible if intersection of non-zero congruences is non-zero i.e.) \cap θ $\qquad \neq \Delta_{\mathbb{A}}$

Theorem 1

 $3 = \{0, 1, 2\}$ is the only subdirectly irreducible A*-algebra.

Proof

Suppose, A is a subdirectly irreducible A*-algebra. Let, $a \in A - \{0, 1\}$ Suppose, $a \vee a^{\sim} = 1$ $\theta_a \cap \theta_{a^{\sim}} \subseteq \theta_1$. $\theta_a \cap \theta_{a^{\sim}} \subseteq \Delta_A \Rightarrow \theta_a \cap \theta_{a^{\sim}} = \Delta_A$, a contradiction. (Because $\theta_a \neq \Delta_A$, $\theta_{a^{\sim}} \neq \Delta_A$ from 2.6). $a \in A$ - $\{0, 1\} \Rightarrow a \vee a^{\sim} \neq 1$ Let, $\theta = \bigcap_{\alpha \in A} \theta_{\alpha}$ Define, $f: A \rightarrow \{0, 1, 2\}$ by f(0) = 0,

f(1) = 1, f(x) = 2 if $x \ne 0$, 1. Therefore, f is a homomorphism by 2.8. Define, φ on A by $x \varphi y \Leftrightarrow f(x) = f(y)$.

Then, ϕ is a congruence relation on A. Consider, $\phi \cap \theta$ Let, $(x, y) \in \phi \cap \theta \Rightarrow (x, y) \in \phi$ and $(x, y) \in \theta \Rightarrow (x, y) \in \phi$, x = y (by 2.7) Therefore, $\phi \cap \theta = \Delta_A \Rightarrow \phi = \Delta_A$ (since $\theta \neq \Delta_A$, A is subdirectly irreducible).

Let $x, y \in A$, $f(x) = f(y) \Rightarrow x \in y$ (since $\phi = \Delta_A$) Therefore, $f(x) = f(y) \Rightarrow x = y$ Therefore, $f: A \rightarrow 3$ is injective.

Therefore, ker $f = \{0\} \Rightarrow A \cong f(A)$. But, f(A) is an A^* -subalgebra of 3. So, f(A) = 3. Therefore, $A \cong 3$.

Corollary 1

Every A*-algebra is a sub A*-algebra of a product of copies of 3

Proof

By 2.10 and a theorem of Birkhoff [1] every A*-algebra is a sub-direct product of copies of 3.

Corollary 2

In every A*-algebra $x \wedge 0 = x \wedge x^{\sim}$.

REFERENCES

Birkhoff, G., 1948. Lattice Theory. American Mathematical Society, Colloquium Publications, New York.

Guzman, F. and C.C. Squier, 1990. The algebra of conditional logic. Algebra Universalis, 27: 88-110.

Koteswara Rao, P. and J. Venkateswara Rao, 2003. Boolean algebras and A-algebras. J. Pure Math., 20: 33-38.

Koteswara Rao, P., 1994. A*-Algebras and if-then-else structures. Ph.D. Thesis, Acharya Nagarjuna University, Andhra Pradesh, India.

- Koteswara Rao, P. and J. Venkateswara Rao, 2004. Prime ideals and congruences in A-algebras. Southeast Asian Bull. Math., 28: 1099-1119.
- Koteswara Rao, P. and J. Venkateswara Rao, 2005. A Cayley theorem for A-Algebras. Sectunia Matematica, S1, F1, pp: 1-6.
- Koteswara Rao, P. and J. Venkateswara Rao, 2008. A*-Modules and If-then-else algebras over A*-algebras. Int. J. Comput. Math. Appl., 2: 103-108.
- Koteswara Rao, P. and J. Venkateswara Rao, 2010. Polynomials over A*-algebras. Southeast Asian Bulletin of Mathematics, China.
- Lambek, J., 1966. Lectures on Rings and Modules. Blaisdell Publishing Company, London. Manes, E.G., 1989. The equational theory of disjoint alternatives. Personal Communication to Prof. N.V. Subrahmanyam.
- Manes, E.G., 1993. Adas and the equational theory of if-then-else. Algebra Universalis, 30: 373-394.
- Venkateswa Rao, J., 2000. A*-algebras. Ph.D. Thesis, Nagarjuna University.