mfi&ﬁ ‘ |
Asian Joumal Of
Mathematics &
Statistics

ISSN 1994-5418

science
alert

ANSI%@i

s publishe
hitp:Jansinet.com




Asian Journal of Mathematics and Statistics 3 (4): 249-253, 2010
ISSN 1994-5418
© 2010 Asian Network for Scientific Information

Subdirect Representations in A*-Algebras

']. Venkateswara Rao and *P. Koteswara Rao
"Department of Mathematics,Mekelle University, Mekelle, Ethiopia
*Department of Commerce, Nagarjuna University,
Nagarjuna Nagar-522 510, A P, India

Abstract: This study investigates about subdirect representations in A*-algebras.
A natural A*-homomorphism £ A-3 = {0, 1, 2} for an A*-algebra A is obtained.
The foremost results of this study are every subdirectly irreducible A*-algebra A
is isomorphic to 3 and every A*-algebra is a sub A*-algebra of a product of copies
of 3.
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INTRODUCTION

In a drafted study Manes (1989) introduced the concept of Ada based on extending the
If-Then-Else concept more on the basis of Boolean algebras and later Manes (1993)
introduced an Ada (A, A, V, (=), (<), 0, 1, 2), based on C-algebras introduced by Guzman and
Squier (1990). Koteswara Rao (1994) introduced the concept of A*-algebra, analogous to the
Manes (1993) Adas. Venkateswa Rao (2000) studied extensively the concept of subdirect
representations in A*-algebras based on the subdirect representations in rings (Lambek,
1966). Koteswara Rao and Venkateswa Rao (2003) studied about algebraic structures of
Boolean Algebras and A*-algebras and obtained the methods of generating A*-algebras
from Boolean algebras and vice-versa. Koteswara Rao and Venkateswa Rao (2004) introduced
the concepts of Prime Tdeals and Congruences in A*-Algebras and developed the general
ideal theory. Koteswara Rao and Venkateswa Rao (2005) obtained a Cayley theorem for
A*-Algebras. Koteswara Rao and Venkateswara Rao (2008) introduced the concepts of
A*-Modules and Tf-Then-Else Algebras over A*-algebras. Koteswara Rao and Venkateswa
Rao (2010) mtroduced Polynomials over A*-Algebras.

In this research, we investigate the subdirect representations in A*-algebras as
3 =10, 1, 2} 1s the only subdirectly irreducible A*-algebra and every A*-algebra i1s a sub A*-
algebra of product of copies of 3.

PRELIMINARIES

Definition 1

An algebra (A, A, « (<), (-), 1) is an A*-algebra if it satisfies: Fora, b, c e A, (I) a, V (a,)"
=1,(a),=a,whereaVb=(&Ab) (a, Vb =bVa,(a Vb )Ve=aV(b Vc)
(V) (a, A bV (8, A (b)) = &, (v) (a A b), = a, A by, (a A b)Y = a*V b* where, a* = (a, V a7,)";
(viya, =(a, Va7, a*=2a" (vi) (a.b), =a, (a. b =(a,)" A (b")"; (viil) a = b if and only if a,
=b,.a*=b*
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We write, Ofor 17, 2for 0. 1.

Example
3 =40, 1, 2} with the operations defined below 1s an A*-algebra.

[ B ) -]
L]

B = S
[ ]
o = ol
Moo= M-
o o= N
L= =l -]
0 o= O -
Ll = = ]

W o=
o o= ol
[T N
D= o

[ S ]

N o o|o

e

Note

From 1.1 (I) to 1.1 (iv) and by Huntington's theorem (Birkhoff, 1948)) we see that,
B(A) = {a,/a € A} 1s a Boolean algebra with /A, V, (-)", O and a € B(A)=a, = a. Since, 1, 0, (a, )"
€ B(A), wehavel,=1,0,=0,(a,), =(a,yanda, A a*=0,a.0=a,.

Sub Direct Representations
Lemma 1

Inevery A*-algebra A () xAx=%x ()xA X Vy)=xAy ()xVy=0=x=0,{v)xVy
=l=xVx =1

Proof

From 1.1 (viii) we have (i), (i). (ii)): x =xV 0 =xV xV y=xV y = 0. Therefore x = 0. (iv):
1=xVy=xV & ANy)(fromdual of (1)) = (xV x) A xVy)=(xVx)AN1=xVx" Therefore x
Vx=1.

Definition 2
Forae A, define 0, = {(x, y¥a, x, =,y a,x* = a, ¥y}

Lemma 2
6, is a congruence relation on A.

Proof

Clearly, 8, is an equivalence relation on A.
xyeb=ax =ay,ax =ay=a Vx =a Vy =ai(a Vx)=aA @ Vy )=,
%, = a, y,. Similarly, a, x* = a, v =a, x, X" =a, v, ¥V —a, X, = a, v, Clearly, a, x*=a,
y*=(, y) € 0, Clearly, x8, y=x, 6, y,. X 0, y" Suppose, x 8y, bB.c=a, x, = a,y,. 8, x =1,
v* a, b, = a, ¢, a, b¥=a, ¢* Clearly, (x A b)0, (y A ¢), a,(x . b), = a, (v » ¢), Now, we will show
that, a.(x « b = a,(y « of a, x, = &, y,=a, x,” = a, y, x0 y=x"0, y=a, X", =, y,=a,x, ~a,
Y-

Similarly, b0 c=a, b7 =a, ¢ a, b =8, ¢ e, x b ma x e, b sy, a0 =,
v, ¢~ Therefore, a.(x .« b)* = a(y . ¢)* Hence, (x - b)B, (v « ¢). Therefore, 6, is a congruence
relation on A.

Lemma 3

6,n0,c6

ava-

Notation
A, ={x,x)/xe Al
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Lemma 4

0,=A,=a=1

Proof
alafx),=a Ax.alafxF=a &V =a, ¥ Therefore, (a/ x, x)e B =(aAx, x) e A,=a
M x =x Therefore, af x =xforeveryx € A. So,afAx=1=a=1.

Lemma 5

al_b,b0,_a=a=b

Proof
a=aV(a Ma)(from 1.1 vii))=aV (aAb)=aV b (from 1.1 (viii)). Similarly, b=aVV b.
Therefore, a =b.

Lemma 6

Let A be an A*-algebra with 0, 1 (0 # 1). Suppose that for any x € A —{0, 1}, xV x™ # 1.
Definef: A-3=140,1,2 by f{1) =1, f{0)=0and f(x) =2 forall x # 0, 1. Then fis an A*-
homomorphism.

Proof

To show that, f(x7) = (f(x)) forallx e AForx =0, 1, f{x") = (f{x)) Suppose, x # 0, 1=x" #
0=f(x") = 2.

Since, x # 0, 1, {{x) = 2=(f(x))" = 2 Therefore, f(x™) = (f(x))".

Claim
fixVy)=f)Vf(y), forallx e A

Case (i)
Forx=0fixVy)=fx)V f{y), forally € A is clear

Case (ii)
Forx=1fxVy) =fx)V f{y), forally e A

For, y =0, 1 the result is clear. Suppose, y # 0, 1=xVy# 0, 1. Ify # 0, 1=xVy # 0, 1.
(Since, (xVy)=0=x=0,y=0,xVy)=l=2yvVy =1)S0,1Vy=0,1.80, f1Vy)=2=1V
2 =1(1)V f{y) Therefore, {1 V y) = 1) V f{y)

Case (iii)
Forx=0,1=xVy=0,1f{xVy)=2=2V f{y)=fx)V f{y).

Therefore, f{x V y) =1f{x)V {(y), for all x € A. To prove that, f{x,) = ({(x)), forall x € A. Tf,
x # 0,1, itis clear. Suppose, x # 0, 1. Claim: x, =0 Since,x # 0, L xV x"# 1. x, Vx,=1=%x"=
X=Xt = 0=x=x,xV X =x,Vx,"= 1, a contradiction. Therefore, x, V x™, # 1. Suppose, x, vV X,
#0=x Vx, 20 1.(x, VXV VX, #1,acontradiction. Therefore,x, VX , =0=x,=0and
X7, =0 Smce, x, =0, f{x,) ={(0) =0=2_= (f(x)), Therefore, f{x,) = (f(x)),, forall x € A.

Claim 1

f(x®) = (f(x))", forall x € A f(x%) = fix, V x7)" = [f(x, V x )] = [f(x) V fx)] = [(£x), v
(&N,

= [(f)), Vv fx),.] = Ex)) Therefore, f(x*) = (fx)¥ forall x € A.
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Claim 2

Forallx, y € A, fx .y) = )+ fy). [fix - ¥, = KGx . ¥),) = fx,) = £6x), But, [£60) £y, =
[£(x)], Therefore, f{x . y), = [fx) . fiy)]. forall x, y € A fix. vy = K. v =x"A v, =fx)
Ay ) = 1), A By), = (8x) « £)). Therefore, fi(x .« v = (f(x) . fy)* forall x, y € A
Therefore, f(x . y) = f(x) . f(y) for all x, v € A. Therefore, f is an A*-homomorphism.

Definition 3
An algebra A 18 called subdirectly wreducible if mtersection of non-zero congruences
is non-zero i.e.) M B A,

Theorem 1
3=140,1, 2} 1s the only subdirectly irreducible A*-algebra.

Proof

Suppose, A is a subdirectly irreducible A*-algebra. Let, a € A — {0, 1} Suppose, a
Va=10n0_c0,.0,n0_cA=0n0_=A, acontradiction. (Because 0_= A, 0_ #
Afrom26)acA-{0, 1t =aVa =1Let, 0= ﬂ 0. Define, £ A -{0, 1, 2} by f{0) =0,

a=l

f{1y=1,ftx)=21fx # 0, 1. Therefore, {15 a homomorphism by 2.8. Define, pon Abyx @y =
fx) = £(y).

Then, ¢ is a congruence relation on A. Consider, ¢ n 0 Let, (x, y) € ¢ N B=(x, y) € ¢ and
(x, v) e 0=(x, y) € ¢, x = v (by 2.7) Therefore, p N 6 = A,»>@p = A, (since 0 # A, A is
subdirectly mreducible).

Letx,y € A, fix) = f{y)=x @ y=x =y (since ¢ = A,) Therefore, {(x) = f{y)=x = y Therefore,
f: A -3 is injective.

Therefore, ker £ = {01 =A = f{A). But, f{A) is an A*-subalgebra of 3. So, f{A) = 3.
Therefore, A = 3.

Corollary 1
Every A*-algebra is a sub A*-algebra of a product of copies of 3

Proof
By 2.10 and a theorem of Birkhoff [1] every A*-algebra is a sub-direct product of copies
of 3.

Corollary 2
In every A*-algebrax A 0=x A X"
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