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Abstract: This study discusses the sclection of parametric models of the moisture retention
characteristic MRC as nonlinear regression models from a mathematical and statistical
viewpoint. Simulation studies and some measures of nonlinearity are given. A comparison
is introduced between the used famous models of the moisture retention characteristic
(van Genuchten and King) which are presented early and their variants. Following the
considered simulation study and the used measures of nonlinearity in nonlinear regression
the author find that although a variant of van Genuchten model with four parameters is an
optimal model but it has a strong nonlinear parameter. Moreover, a possible appropriate
reparametrization with respect to this nonlinear parameter is proposed.

Key words: Nonlinear regression models, measure of nonlinearity, model selection,
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INTRODUCTION

The moisture retention characteristic MRC, which is the relation between water content
(the volumetric water content @) and pressure head (the soil capillary pressure h), can be measured for
natural soils. Ttis referred to as the soil water retention curve. This relationship is primarily based on
the soil pore structure and the pore size distribution. The MRC @¢h) is typical for a given soil having
its particular status of consolidation, geometrical arrangement of particles and aggregation and other
chemical and biological feature. The retention curve graphically displavs a continuously differentiable
(smooth) S-shaped curve between the saturated and residual water contents (@, and @, respectively).
Knowledge of the MRC is indispensable in describing soil water processes (flow). The MRC can be
determined either directly in the field or in the laboratory on undisturbed core samples. MRC data from
Vereecken et af. (1989) are used. These data sampled the soil horizons of forty important Belgian soil
series and measured their MRC.

Several of parametric models have been proposed to deseribe MRC and all these models are
nonlinear regression models (NLR-models). Most of the proposed models are curve-fitting equations
and they are able to describe the typical S-shaped behavior of MRC and represent NLR-models which
can be fitted to give data of MRC. The model-parameters can be estimated by applying algorithms
minmizing a least squares (L3) object function (Bates and Watts, 1988).

Mathematical statistics have developed several methods for model selection in nonlinear
regression. In this study, the researcher studies problems of model selection for MRC from a
statistical and mathematical viewpoint. This study is carried out through the comparison between
the used MRC-model proposed by van Genuchten (1980), a MRC model developed by King (1965)
and its varants. A main task of the analysis of experimental data is the estimation of the
parameters in a NLR-model (Bates and Watts, 1988; Ratkowsky, 1983; Ratkowsky, 1990;

Corresponding Author: Shebin El-Kom, Department of Mathematics, Faculty of Science, Menoufia University, Egypt

*Originally Published in Asian Journda of Mathematics and Statistics, 2008
254



Asian J. Math. Stat., 3 (4): 254-266, 2010

Seber and Wild, 2005). Usually it is not known whether a proposed regression model describes the
unknown true regression function sufficiently well. But the results of the statistical analysis may
heavily depend on the chosen model.

Modelers probably have one of the three purposes in mind when they wish to fit a NLR-model
to set of data. First, they are interested in obtaining a good fit to the data. That means, they are
primarily interested in the representation of the relationship between the independent and
dependent variables by the chosen model. Secondly, they focus onthe prediction of values
of the dependent (response) variable for given values of the independent (regressor) variable.
Moreover in some situations the modelers wish to make inference based upon interpretation
of the parameter estimates of the corresponding model. The current study concerns with the second
and the third aspects.

A more general NLR-model may be written:

le:f(Xl, )+81], i=1,2, .k,j=L2, _,n, N=>n (1)

1
1=1

where, y; is the values of the response varable Y at fixed values x of exploratory variables
(nonrandom design points). Here, the real valued function f(.,p)is expectation function and it
is known up to a P-dimensional vector of parameters 5 = (B, B,,....,) eRF and this function is twice
continuously differentiable in (3. Moreover, the random perturbations «, (the measurement errors)
are uncorrelated randorm variables with zero mean and unknown variance, o? which do not depend on
%,. Given the date

(Xi,y”), i=1,2, .k,j=1.2,...,n, N=3Sn (2)

the estimation of the regression function f reduces to estimate its parameters. The most popular
approach to estimate = (5, P, ... p,) is to employ the ordinary least squares estimator

B= (f;l, ﬁz, . f;p y, whichis a minimizer of the sum of squares
SB) =YY (v, (.. B)’ 3)

1=1 j=1

The linearity of the regression model (1) may be produced if the expected response f{x, ) is a linear
function of the parameter vector 3= (p,, Bu.....B,)
The solution B of the corresponding mimmum problem

S(By = min S(B) #

with respect to a linear regression model (LR-model) will be given by an explicit algebraic expression.
This solution, which is the least squares estimator B of [, is a linear function of the data vector of y;,
asymptotically normally distributed, unbiased and it has a rminimum variance (Bates and Watts, 1988,
Haines ef ai., 2004).

For the NLR-models the situation is different. There is no explicit expression for ﬁ . One gets the
least squares estimator ﬁ for B only by an iterative procedure starting from some assumed value of
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[3. In general the least squares estimators of the parameters of a NLR-model are biased, non-normally
distributed (skewed) with variance exceeding the mimimum possible variances in the corresponding
linear model (Ratkowsky, 1983). The extend of bias, non-normality and excess of variances differs
widely from model to model. The researcher looks for MRC models which, with respect to their
estimation behavior, are closely related to LR-models.

NLR-models differ in their estimation properties from linear regression models. Given the usual
assumption of independent and identically distributed measurement errors, the parameter (LS)
estimators for linear models are linear, unbiased, at least asymptotically normally distributed, minimum
variance estimators. On the other hand, NLR-models tend to do so only when the sample size becomes
very large.

In this study, the purpose is the exploration and the comparison of the properties of estimators
for some different MRC models in situations having sample sizes typically obtained in practice. The
MRC models with close-to-linear estimation behavior are looked. The extend of nonlinear estimation
behavior {e.g., bias) depends upon the nonlinearity of a model/data set combination. Therefore, this
work can be carried out in the first step by using sirmulation studies with respect to the considering
models and in the second step by computing some measure of nonlinearity.

The aim of the presented study is to select an optimal MRC model, to determine the cause of the
nonlinearity in this selected model and finally to diminish (or avoid) this defect through a suggested
reparameterization.

THE CLASS OF FUNCTIONS USED FOR MODEL SELECTION

van Genuchten (1980) presented a widely used class of functions for parametrizing measured soil
water characteristics

©,-0,)

—s el (5)
1+ (o hy )"

@h)=0, +

where ¢, n and m are positive parameters defining the MRC's shape and this model is denoted by
(VG1). This finction is a MRC model of five parameters ¢, n, m beside, @, 0, Morzover, King (1965)
suggested the following model

cosh(th/h, 3 +&)—y (®)
cosh((h/h,)" + &)+ y

®(h)—®s>{

with five real parameters @,, hy, b, € and v where b having negative values and this model denoted by
(K1). The Table 1 indicates to special cases (VG2), (VG3), (VG4 and (VGS5) of van Genuchten modsl
(VG1) and also the model (K2) as a special case of the model (K1) of King, which are models with
fewer parameters:

Each of the models (VG2), (VG3) and (VG4) has four parameters @, €, «, n but (VG3)
is the model with only three parameters ©, o, n. Also, the model (K2) has four parameters
and @, hy, band .

Table 1: Some variants of van Genuchten model (WVG1) and King model (K1)
Model VG2) (VG3) VG (VGS) (K2

Case m=1-1/n m=1-2n m=1 0=0m=1 =0
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USING METHODS TO SELECT A NLR-MODEL FOR MRC

Two methods to select a NLR-model for MRC are used in this study. These methods are
described in the following two subsections.

Description of the Simulation Experiments

Simulation studies {(experiments) are probably the most direct and best way to enable the modeler
to study the sampling properties of the LS estimator. Data are generated using a set of predetermined
values of the parameters, allowing only the values of the measurement error to change randomly or
pseudo-randomly form set to set. By this means, many sets of simulated data produced and each set
provides a LS estimates of the parameters of the model under consideration. These estimated
parameters may be examined for their bias, variance and other distributional properties.

Throughout this study, the reported results of simulation are based on 100 sets of simulated data.
Recall that the NLR-model is given by (1), where the £, are uncorrelated identically distributed random
variables. The measurement errors are generated under the considering assumptions (independent
identically normally distributed measurement errors with zero mean and constant variance o). If one
assumes such a type of distribution of the measurement error, then there is a possibility to choose
an appropriate value of the variance. The considering selection of ¢ is based on MRC data from
Vereecken ef al. (1989) (Table 2). The variance is model independent estimated using the repeated
measurements (pure error, inira sample estimates). The calculated value & = 0.015905 is a typical
mean value with respect to the other data sets of Vereecken with repeated measurements. Now, a
simulation study for two different soils (sand and loam) is illustrated using this estimated value & and
true parameters for the model (VG2).

Table 3 contains on the true parameters of the model (VG2) for two different soils sand
and loam (Carsel and Parrish, 1988).

Every simulated data set has the structure of Verececken MRC data. A simulated value is the sum
of the expected value corresponding to the value of pressure and a random error, which is normally
distributed with zero mean and variance &7 . Table 2 shows the measured MRC data of a Belgian soil
(Bates and Watts, 1988), the theoretically expected values of sand and the first simulated data set.

Each set of simulated data is then fitted by least squares. That means, the vector of parameters
[ of the considering models (VGI1), (VG2), (VG3), (VG4), (VGS), (K1) and (K2) is estimated.

Table 2: Measured MRC-data, theoretically expected (MODEL) of sand and the first simulated MRC-data for sand

(SIMUL 1)
h o) MODEL SIMUL 1
1.00 0.512 0.429 0.431
1.00 0.545 0.429 0.376
316 0.510 0.403 0.391
3.16 0.544 0.403 0.382
10.00 0.504 0.216 0.232
10.00 0.537 0.216 0.193
31.62 0.481 0.075 0.071
31.62 0.506 0.075 0.068
100.00 0411 0.050 0.046
100.00 0.422 0.050 0.040
199.53 0.320 0.046 0.029
199,53 0.348 0.046 0.072
630.96 0.293 0.045 0.053
630.96 0.287 0.045 0.040
2512.5¢ 0.141 0.045 0.039
2513.30 0.139 0.045 0.034
15848.92 0.149 0.045 0.071
15848.92 0.158 0.045 0.036
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Table 3: True parameters of van Genuchten model (VG2)

Texture class ©, © o n m=1-1/n
Sand 0.045 0.43 0.145 2.68 0.620
Loam 0.078 0.43 0.036 1.56 0.359

Table 4: Estimated vector of parameters of the model (VG1) corresponding to the first simulated data set for sand
Parameter ©, Q, o n m
Estimated values 0.045431 0404116 0.129247 2.869584 0.678016

Different algorithms are used, for instance the Levenberg/Marquardt method (Bates and Watts, 1988).
In the case of model (VG1) and (VG2), the true (simulated) vector of parameters is considered as an
initial estimate. Table 4 contains the estimated vector of parameters f; of the model {(VGI1)
corresponding to the first simulated data set for sand.

For every model under consideration, 100 estimates are produced. Taking each parameter
separately, univariate statistics are calculated and the corresponding distribution is graphed. In
addition, it is possible to examine the multivariate behavior of the 1S estimator by calculating bivariate
statistics and using two or three dimensional plots. This means that the researcher can see how close
to linear in its behavior the LS estimator is. An acceptable model leads to LS estimations for its
parameters with small biases, with distributions close to normal distribution and variances close to the
minimal possible variances.

Description of the Measures of Nonlinearity

Another possible way to analyze the nonlinear behavior of a model data set combination is the
calculation of so called measures of nonlinearity (¢.g., curvature, bias and skewness). Using differential
geometry-concepts, the measures of nonlinearity based on the notion of curvature were developed
(Bates and Watts, 1988; El-Shehawy, 2001; El-Shehawy and Karawia, 2006). These measures are
independent of scale changes in both the data and parameters. They can be used to compare different
models with different parameterizations combined with different data set.

The N-vector n(p) with the components

n(P)=fx,p), i=1.. N, BeR” N

defines a P-dimensional surface, the so called expectation surface or solution locus in the n-dimensional
response space. The LS estimate ﬁ correspends to that pointn ( ﬁ ) on this surface which is closest to
the measured N-dimensional vector of response y. The parameter vector P is assumed in the
neighborhood of its .S estimate ﬁ

Ifthe quadratic term in the second order Taylor approximation of m(P) is neglected, one will have
for (3 in the vicinity of f; the linear approximation

nBB)~ V (E-B), @
. d 2 .
where V isthe (N, P) Jacobi-matrix ? at f=p (Ratkowsky, 1983). The range of the matrix V
is the tangent plane to the expectation surPace at the point ﬁ and the linear approximation (8) amounts
to approximating the expectation surface in a neighborhood of ﬁ by this plane. Using (8) the following
form is got

@Y = @BV B-f) ©)
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From some statistical properties of the linear models (Bates and Watts, 1988; Haines ef af., 2004),
the following ellipsoid with center f; is considered as an approximation of an 100 (1-a)% confidence

region for = (B, By, ..., P} €R”:
(B—B)TVTV (B-R)<Ps  F(P,N-P;a) (19

where s’ = SE® is the residual mean square, is the upper a quantile for the F-distribution with
P, N-P degrees of freedom.

From (7), (8) and (10), the expectation surface m(P) lies approximately within the intersection
of tangent plane and a sphere with center 1( B ) and radius J}m .

A LR-model has a linear solution locus, which means a hyper-plane for pz3 and (9)
holds exactly. In addition, lines (parameter lines) on the solution locus representing constant values
of p,r=1,2, .., P, are straight, parallel and equally spaced for equal increments of p,.

For a nonlinear solution locus the sitnation is different. The solution locus is a curved surface and
the parameter lines on this surface (or the projections of these lines onto the tangent plane) are, in
general, neither straight, parallel nor equi-spaced.

The extent of the curvature of the solution locus has been called intrinsic nonlinearity, since this
nonlinearity cannot be altered by reparametrization. It is an inner geometrical property of the surface.
The extent of the curvature of the parameter lines, their lack of parallelism and equi-spacedness has
been called parameter-effects nonlinearity, since it is determined by the way in which the parameters
appear in the model, that means, it depends on the parameterizations (Bates and Watts, 1988).

The validity of the tangent plane approximation (8) will depend on the magnitude of the quadratic
termn in the Taylor expansion of n(P) relative to the linear term. In making this comparison it is helpful
to split the quadratic term into two orthogonal components, the respective projections onto the tangent
plane and the component normal to the tangent plane. These components were compared with the
linear term and got two measures of nonlinearity, the parameter-effects curvature and the intrinsic
curvature. Standardizing the model and the data leads to scale independent quantities. Both measures
depend on the direction (- [3). Root Mean Square (RMS) curvatures are used, which are the square
root of the average over all directions of squared curvatures. These measures are denoted by ¢
(intrinsic curvature) and ¢ (parameter-effects curvature). The symbol 1/4fF refers to the inverse
of the radius of the (standardized) sphere (10).

A convenient scale of reference can be established by comparing the RMS curvature with that of
the (scaled) confidence disk (10) at a specified level (1-a), a>0. That means, we compare the radius of
curvature 1/¢ (¢ = ¢ or ¢ = ¢*%) with the radius of the confidence disk fF . An RMS curvature will
be considered as small if it is much less than the curvature of the {1-a) confidence disc, that is if
c<<1/ﬁ . where F=F (P, N-P; a).

Following some earlier several research study s, an expectation surface with radius of curvature
1/¢ is considered and the deviation of the tangent plane from the surface or the deviation of the
parameter line from the straight line at a distance /T is determined. This deviation, expressed as a
percentage of the radius of the confidence disk, is 100(1- m 3/ (cofF) % , so that:

«  Avalueof CINJF = 0.2 causes the surface to deviate by 10% of the radius of the confidence at
the edge of the confidence disk;

+ A valueof oW fF = 02 causes the surface to deviate by 27% of the radius of the confidence at
the edge of the confidence disk;

e Avalue of (W fF =1 causes the surface to deviate by 100% of the radius of the confidsnce at
the edge of the confidence disk and so on.
If ¢™is replaced by ¢™ then a corresponding rule about the deviation of a parameter line from a

straight line will be get.
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In almost all cases known from several works the intrinsic curvature is very much smaller than
the parameter-effects nonlinearity. Since ¢ depends on the parameterization it is possible to reduce
the parameter-effects nonlinearity using an appropriate reparametrization for the model under
consideration.

Another practicable way to study the nonlinear behavior of a model data set combination is the
calculation of estimation for the bias in the LS estimates. A corresponding formula for bias was
presented by Box (1971) and El-Shehawy (2001). The approximate bias for each component of the
estimate ﬁ is calculated separately.

Although the bias can be used as a measure of the extent to which parameter estimates may exceed
or fall short of the true parameter values yet it cannot be used to compare parameters in two different
parameterizations (Ratkowsky, 1990). This comparison is possible with another measure of
nonlinearity, the measure of skewness (of the distribution of the estimated parameter) due to Hougaard
(1985) and El-Shehawy (2001). Following Ratkowsky (1990), it is possible to use a rule-of-thumb for
asserting whether the estimator ér of the »th compenent B, of the parameter vector P, as assessed
by the measure of skewness Sk, is close-to-linear (nearly symmetrically distributed) or contains
considerable nonlinearity:

« If 8k < 0.1, the estimator [_S,r of p, will be very close-to-linear in behavior;

« If0.1 < Sk <0.25, the estimator will be reasonably close-to-linear in behavior,
« If Sk, > 0.25, the skewness is very apparent and

« If Sk, > 1, indicates considerable nonlinear behavior.

RESULTS

Simulation Experiments

Table 5 shows the mean value of the residual sum of squares S(B) for all models under
consideration with respected to the simmulation of sand.

If the retention models with respect to the ability to fit the simulated data are compared, the
models with five parameters (VG1) and (K1) will be most flexible. The difference between these best
fitting models and the models with four parameters is marginal, only the model (VG5) with three
parameters is not flexible enough. These properties of the retention models neither depend on the type
of the simulated soil nor on the used optimization algorithm.

Consider the distribution of the estimated parameters of the models (VG1) and (VG4). Some
descriptive statistics of the 100 estimated parameters of the model (VG1) for the simulated data sets
of sand are given in Table 6.

Table 5: Residual sum of squares for the simulated data sets of sand

Model (VGD) (VG2) (VG3) (VG (VGS) KD (K2)
SB) 0.0035 0.0038 0.0039 0.0040 0.0223 0.0035 0.0038

Table 6: Descriptive statistics for the distribution of the estimated parameters for the model (VG1) and the simulated data

sets of sand
Parameters  True value Mean Min. Max. St. dev. Skewness Sign.
e, 0.045 0.045 0.024 0.065 0.007 -0.104 0.196
Q, 0.430 0.431 0.391 0.485 0.015 0.431 0.001
¢3 0.145 0.143 0.040 0.322 0.047 0.440 0.000
n 2.680 7.187 1.409 296.331 29.697 9.523 0.000
m 0.620 0.787 0.003 4.206 0.641 2.179 0.000
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(d (&) 6]

Fig. 1: The shape of the distributions of the estimated parameters @, ( (a), (b), (c) figures) and m {(d),
{e), (f) figures) of the model (VG1) and the simulated data sets of sand (Histogram with
density, Pox-Plot and Q-Q Plot)

’ 7‘% Beta 2 T t ﬁ;z ;
-y - ) .
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s T - r———
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Fig. 2: The scatter-plot matrix for the estimated parameters of the model (VG1) and the simulated data
sets of sand

The symbol Sign. refer to the p-values for the goodness of fit test (Kolmogorov-Smirnov test) for
the fit of a normal distribution. Only the distribution of the linear parameter @, is similar to a normal
distribution (p-value=0.05). In case of all other parameters the hypotheses of normal distribution has
to be rejected (since p-value<0.05). These parameters are nonlinear parameters. The estimation of these
parameters is biased and the distribution of the estimations is non-svimmetric with a great variability.
Especially, the parameters n and m are skewed (right tail) with some very extreme values. Figure 1
describes the shape of the distributions and the similarity to the normal distribution of the linear
parameter 0, and of the nonlinear parameter m.

Consider dependencies between the estimated parameters of the model with five parameters
(VG1). The scatter-plot matrix in Fig. 2 shows strong relationships especially between the nonlinear
parameters a, n, m. Inthe Fig. 2, Beta 1, Beta 2, Beta 3, Beta 4 and Beta 5 denote to ©,, ©,, ¢, nand
m, respectively.
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Table 7: Descriptive statistics for the distribution of the estimated parameters for the model (VG4) and the simulated data

sets of sand
Parameters Mean Min. Max. St. dev. Skewness Sign.
o, 0.047 0.026 0.064 0.006 -0.205 0.200
o, 0.435 0.401 0.747 0.014 0.182 0.067
o 0.115 0.088 0.134 0.008 0.485 0.003
n 2.283 1.529 4.589 0.469 1.506 0.015

B o

@ (b) ©

o
%
() ) ®

Fig. 3: The shape of the distributions of the estimated parameters @, ((a), (b), (¢) figures) and n {(d),
(2), (f) figures) of the model (VG4) and the simulated data sets of sand (Histogram with
density, Pox-Plot and Q-Q Plot)

Spearman's rank correlation coefficient (a measure on monotone dependence (Johnson and
Bhattacharyya, 1992) for a pair ¢, m is equal to -0.917. Within the three dimensional space the
estimated values ¢, n, m describe a nonrandom point could. The points are concentrated along space
curves. The corresponding constellations of parameters allow an equal fit of the same data. That means,
with the model (VGI1) over fitting is possible, estimated parameters may depend on each other and
therefore it is impossible to identify a (simulated or rzal) soil using the estimated vector of parameters.

If the model (VG4) with four parameters and m = 1 is considered, the results for the simulated
data sets of sand are given in Table 7.

It is obvious, that the estimation properties of the parameters of the model (VG4) are much more
better than the corresponding properties of the model (VG1). The strong nonlinear parameter m of the
model (VG1) is fixed. Although the model (VG4) is flexible yet it is also stiff enough (Fig. 3).

The scatter-plot matrix in Fig. 4 shows strong relationships especially between the nonlinear
parameters o and n.

The parameter n of the model (VG4) has the worst estimation properties in comparison with the
other parameters €', €° and «. The distribution of the estimated values of this parameter has a great
variability and is skewed (Fig. 3).

If the interest is considered in the model (VG4), an attempt to improve these problematic qualities
will be occwrred by a reparametrization. As an example, consider the replacement of the parameter
n by 1/11 . This reparametrization of the model {VG4) is denoted by the model (RVG4). The
distributional properties of this new parameter fi are studied. Table 8 contains descriptive statistics
for the parameter 1 for the model (RVG 4) and the simulated data sets of sand.

Table 8 and Fig. 5 show these the distributional properties in comparison with the corresponding
properties of the model (VG4). The results with respect to the other parameters do not change.
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Fig. 4. The scatter-plot matrix for the estimated parameters of the model (VG4) and the simulated
data sets of sand

() (b) (©)

Fig. 5: The shape of the distributions of the estimated parameter 11 of the model (RVG4) and the
simulated data sets of sand (Histogram with density, Pox-Plot and Q-Q Plot)

The statistical properties of the model (VG4) are better than the estimation properties of the
other models of the van Genuchten type with four parameter (VG2) and (VG3). These observed
properties do not depend on the simulated soil.

Consider the model (K1) of King with five parameters and its variant (K2), a similar situation will
be obtained. The model (K1) is very flexible but not stiff enough. Fix the strong nonlinear parameter
g, the model (K2) with four parameters will be obtained. The distributional properties of the estimated
parameters of this model are much better than the properties of the corresponding model (K1).

Some Calculations for Measures of Nonlinearity

Throughout this subsection some results of nonlinearity measures are discussed. These results
relate to the current and previously studied models in combination with some simulated data sets of
sand and loam.

Firstly, consider the calculated RMS curvature measures for the models (VG1), (VG2), (VG3),
(VG4), (VG5), (K1) and (K2). Table 9 indicates to the scaled RMS curvatures (the intrinsic curvature
and the parameter-effects curvature) relative to a 95% confidence disk radius (i.e., a = 0.05) for the
studies models under consideration and the first simulated data set SIMUL 1 of sand.
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Table 8: Descriptive statistics for the distribution of the estimated parameters for the model (RVG4) and the simulated
data sets of sand

Parameters Mean Min. Max. St. dev. Skewness Sign.

n 0.454 0.218 0.654 0.084 0.143 0.200

Table 9: Scaled RMS curvatures relative to 95% confidence disk radius for the considered models and the first simulated
data set of sand

Model (VG1) (VG2) (VG3) (VG (VGS) (K1) (K2)
o 0.2462 0.2582 0.2920 0.2167 0.3671 0.4730 0.4280
& F 10,0923 1.9284 2.7480 1.0743 1.6242 3.2690 1.2680

Table 10: Calculated parameter-effects curvature in the direction corresponding to the parameters of the van Genuchten
models in combination with the first simulated data set of sand

Model (VG (VG2 (VG3) (VG (VGS)

oPE 0.21 0.19 0.21 0.16 0.41
o

CPE 230 3.00 4.30 1.60 1.70

PE 18.00

m

The intrinsic curvature only depends on the geometry (the shape) of the model data set
combination. This measure is independent of the chosen parameterization of the model.

Referring to Table 9, it can be seen that the model (VG4) with four parameters possess the best
value with respect to the parameter-c ffects curvature in comparison with the other models. This table
shows also the extreme value of RMS parameter-effects curvature with respect to the model with five
parameters (VGI1).

Consider different data sets, different values of the curvature are obtained and the order of models
is in general stable. If the number of repeated measurements increases, the curvature will be reduced.
A value of CIN\/F_ causes a moderately deviation of 10% between the expectation surface and the
approximating tangent plane at the radius of confidence disk. The values of the parameter-sffects
curvature are much more greater. This means that there are a great difference between the parameter
lines on the expectation swrface and the parameter lines on the tangent plane at the edge of the
confidence disk. For example, the parameter-effects value 1.00 corresponds to a deviation of a
parameter curve from a straight line at the edge of 100%.

Considering for the single parameters of the studied model, which cause the corresponding value
of the parameter-effects curvature, it is possible to calculate a value of Cll;f in the direction of a rth
component of parameter vector of the model (Bates and Watts, 1988). Table 10 contains the calculated
parameter-effects curvature in the directions corresponding to the parameters ¢, n, m of the van
Genuchten models (VG1), (VG2), (VG3), (VG4), (VG3) in combination with the first simulated data
set SIMUL 1 of sand.

It is obvious, that the corresponding values for the parameters ©, and @, are zero, since these
parameters having linear behavior in the models of van Genuchten. Similarly, the linear parameter @,
in the models of King has a value of zero. On the other hand, the parameter-effects curvature has the
largest values for the parameters n and m, which having strong nonlinear behavior. Therefore, these are
strong nonlinear parameters with estimation properties, which greatly differ from the properties of
linear or near linear parameters. Since these values depend on the parameterization, it is possible to
reduce this nonlinear behavior by a reparametrization.
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Table 11: Bias and skewness for the parameter n and its reparameterization § in the models (VG4) and (RVGH)
respectively in combination with the first sirulated data set of sand.

Model Parameter Bias Skewness
(VG n 0.139 1.540
RVGD i -0.006 -0.284

Considering the reparametrization (RVG4) of the model (VG4), a value of ¢ .JF_ =0.4908 for
the RMS curvature is got for the same simulated data set SIMUL _1 of sand for the RMS curvature but
the corresponding values for the intrinsic curvature do not change. A value 0.53 of the parameter-
effects curvature for the direction of the parameter fi is obtained. The parameter 11 in the model
(RVG4) has properties, which are better than the corresponding properties with respect to the
parameter n in the model (VG4). Moreover, the value of the parameter-effects curvature for (RVG4)
is smaller than the corresponding value for the model (VG4).

The values of the RMS curvatures for the models (K1) and (K2) are smaller than the
corresponding values for the van Genuchten model (VG1) with five parameters, but as a rule the model
(VG4) with four parameters has the best value of the parameter-effects curvature. On the other hand,
the King model (K2) with four parameters has more favorable qualities in comparison with the model
(K1) of King with five parameters.

The results of the calculations of the bias and the skewness measures for the parameter n and its
reparametrization fi in the models (VG4) and (RVG4) respectively in combination with the simulated
data set SIMUL 1 of sand are given in Table 11.

Referring to Fig. 3, 5 and Table 11, it can be seen that the distribution of the estimated values for
the parameter n is skewed with heavy right tail and the distribution of A1 is near symmetric. The mean
value of the estimations of i corresponds to the true value, but the mean value of the estimated values
of'n is greater than the true one.

Using data sets of different simulations (or soils), similar results with respect to the used
measures of nonlinearity will be obtained as a rule.

CONCLUSIONS

Model choice of NLR-models depends on the main aim of the analysis. A retention model, which
considers as a NLR-model, has to be able to describe the typical S-shaped retention curve. If one is
interested in the best fitting model, very flexible models with more parameters should be used. As a
criterion ordinary or in case of heteroscedasticity, weighted least squares can be used.

In case of a retention curve, the models (VG1) and (K1) with five parameters of van Genuchten
and King respectively are optimal with respect to the goodness of fit.

If the stable estimation of the parameters of a model is of prime importance, the distributional
properties of the model parameters should be studies. These can be done by simulation studies or the
calculation of measures of nonlinearity. In this case one looks for models with parameters which have
near linear estimation behavior. These estimation properties are dependent on the inner nonlinearity
of model data set combination, which is independent of the parameterization and the nonlinearity of
model data set combination, which is dependent on the used parameterization. Near linear behavior
means unbiased, near symmetrically distributed estimations with a near minimal variability in
comparison with an approximating linear model.

Using the list of the studied models for the retention fimction in combination with the considered
data sets (simulated or real), the van Genuchten model (VG4) with four parameters is as an optimal
model. At the same time, this model has a strong nonlinear parameter n. A possible appropriate
reparametrization with respect to this parameter is the model (RVG4).
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