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Abstract: Assumptions in the classical normal linear regression model include that of lack
of autocorrelation of the error terms and the zero covariance between the explanatory
variable and the error terms. This study is channecled towards the estimation of the
parameters of the linear regression models when the above two assumptions are violated.
The study used the Monte-Carlo method to investigate the performance of five estimators:
Ordinary Least Squares (OLS), Cochrane Orcutt (CORC), Hildreth Lu (HILU), Maximum
Likelihood (ML) and Maximum Likelihood Grid (MLGRID) in estimating the parameters
of a single lincar regression model in which' the exponential explanatory vanable is also
correlated with the autoregressive error terms. The simulation results, under the finite
sampling properties of bias, Variance and Root Mean Squared Error (RMSE), show that all
estimators are adversely affected as autocorrelation coefficient {p) is close to unity. In this
regard, the estimators rank as follows in descending order of performance: OLS, MLGRID,
ML, CORC and HILU. The estimators conform to the asymptotic properties of estimates
considered. This is seen at all levels of autocorrelation and at all significant levels. The
estimators rank in decreasing order in conformity with the observed asymptotic behaviour
as follows: OLS, ML, MLGRID, HILU and CORC. The results suggest that OLS should
be preferred when autocorrelation level is relatively mild (p = 0.4) and the exponential
regressor is significantly correlated at 5% with the autocorrelated error terms.

Key words: Monte-carlo experiment, estimators, autocorrelated error terms, correlation,
exponential trended regressor, AR{1)

INTRODUCTION

In the classical statistical linear model,

Y=X{+U
Where
Y = TxI vector
X = (Txk) matrix of rank k
B = (kx1)vector of parameters
U = (Tx1)vector of dishurbance terms

(0

In using the Ordinary Least Squares (OLS) method to estimate the parameters and also to enable
inferences to be made about these estimators, certain underlying assumptions are made. Two of them
are the absence of autocorrelation of the error terms and that X is a matrix with nonstochastic elements
and has rank k < T, hence U, and X, are independent for all i and j.
This research is channeled towards the estimation of the parameters of the linear models when
the above two assumptions are violated using exponential trended regressor. This would help
researchers and practitioners in the choice of estimator in empirical work when the regressor and the
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error terms are not well behaved. It would also allow correct inferences in linear models plagued by
autocorrelated disturbances, which are also significantly correlated with the exponential trended
explanatory variable.

Example of this situation is scen in widespread applications in Operations Research, like in
Queuing theory and Econometrics where the usual assumption of independent error terms may not be
plausible in most cases. Also, when using time-series data on a number of micro-economic units, such
as households and service oriented channels, where the stochastic disturbance terms in part reflect
variables which are not included explicitly in the model and which may change slowly over time.
(Nwabueze, 2000).

Under the underlying assumptions, the statistical model (1) can be estimated for the unknown
B vector and the unknown scalar 02, because the observed random variable Y contains all of the
information about them. This estimate of the parameters can be obtained using the least squares or the
maximum likelihood method. The ordinary least squares estimator had been found to be a Best Linear
And Unbiased (BLUE), as shown by the Gauss-Markov theorem, in Johnston (1984). When the
disturbance term U satisfies the basic assumptions, we say that U is well behaved and all the theorems
on OLS relating to estimation and hypotheses testing apply to the parameters of the model of (1).

On the other hand, when there is presence of autocorrelation or serial correlation of the error
terms, the OLS estimate remains unbiased, but they are no longer minimum variance estimates. That
is, they are inefficient, which implies that the standard errors will be based on the wrong expression
o?(X'X37!. Thus the standard t and F tests will no longer be valid and inferences will be misleading.

In time-series applications, there are many structures of autocorrelation. Some of the simplified
structures are: Autoregressive (AR) processes, Moving Average (MA) processes, or Joint
Autoregressive Moving Average (ARMA) processes. There are specific approaches to handling each
of these structures of the error term when they occur in a linear model. They therefore, need different
methods of estimation and hypothesis testing. This study considers the first-order Autoregressive
structure (AR(1)).

Approaches to dealing with estimation in autocorrelated linear models include overall maxirmum
likelihood estimation, least squares and transformation of variables. When the autocorrelated errors are
known, usually, the estimation poses no major problems as the underlying variables can be transformed
to overcome this problem. Different forms of transformation techniques have been proposed by
different researchers. Many researchers have different methods of estimating the autocorrelated
parameters in situations where the variables are unknown. These error estimates are used as weights
in estimating [3.

Consider the model:

Y =XB+U,; U =pU_ +5 t=1,.., T.

(2)
lp|< 1L E(e)=0, E(se') = o!L E(U) = 0 and E(UU") = 0’2
If we multiply the model (2) by some T=T nonsingular transformation matrix P to obtain:
PY = PXp +PU (3)

The variance matrix for the disturbance in Eq. 3 is:
E(PUUP) = o® PQP’ since E(PU)= 0
Since we can specify P such that:

PP =1,
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then the resulting OLS estimates of the transformed variables PY and PX in Eq. 3 have all the optimal
properties of OLS and could be validly subjected to the usual inference procedures. Applying OLS to
Eg. 3 results in minimizing the quadratic form:

U'Q'U=(Y-Xp) Q7 (Y -Xp)

with optimal solutions as:

i(U’QU) =(X'a'x)p-xX'aly =0,
of (4)
which gives:

B(GLS) = (X’Q‘l}( )71 X'y >
with the variance-covariance matrix given by var(p) = o* (X'Q'X)" . This estimator is known as B(GLS)

the Aitken or Generalised Least Squares (GLS) estimator. If we assume normality for the error terms,
the Us, the likelihood function is given by:

(.07 ) = (2" | exp - LT XE) (Y—XB)} o

26"

Where, Q\ 1s the determinant of Q. Optimising this likelihood function with respect to P means
maximizing the weighted sum of squares to obtain;

B, = (X'7'X) X'y 7

In obtaining P oy and p oo, we assume € is known. When Q is not known, we resort to
estimating €} by () in which case, we obtain an Estimated Generalized Least Squares (EGLS) or
Estimated Generalized Maximum Likelihood (EGLM) estimator and therefore:

IB(GLS) = (XffIlX)i1 XY (8)

For this model, in Eq. 5, the TxT covariance matrix of the error vector is:

1 p g
p o1 p pr
E(UU[)=U%V=GZU PPop 1

ptoL 1 ©)
Where:

ol =GZ/(1—p2)

To search for a suitable transformation matrix P*, we consider the following (T-1)=T matrix P*
defined by:

-p 1 0
b | 0 P 1 0
o0 0 —p
0 0 0 .. —p 1 (10)

Where:
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1 —p 0 .. 0 0
X -p 1+p* p .. 0 O
Q‘1=1_p2 0 —p 1+p 0 0
0 0 0 .o—p 1) (11)

P* P* gives(1-p*j withp® instead of | as the first element. Next, we consider another
transformation matrix Py, obtained by adding a new first row with i — p¢ in the first position and
zero elsewhere:

1-p* 0 0
—p 1 0
P=l o - 1
0 0 0 .. —p 1],

(12
PP=(1-p' )0

P* and P differ only in the treatment of the first observation. P* is much easier to use provided
we are prepared to put up with its treatment of the first observation. It has been shown that when
T is large, the difference is negligible but in small samples such as in this study, the difference is
significant.

Such transformations give rise to different methods of estimation. These methods are broadly
classified into those that use P* such as Cochrane-Orcutt (CORC) and Hildreth and Lu (HILU)
methods and those that use P for transformation such as Prais-Winstein (PW), Maximum Likelihood
(ML) method of Beach and Mackinnon (1978) and Maximum Likelihood Grid method (MLGRID).
Nwabueze (2005a).

Many researchers have worked on autocorrelated errors. They include the early work of Cochran
and Orcutt (1949), Durbin and Watson (1950, 1951, 1971), Hildreth and Lu (1960), Rao and Grilliches
(1969), Beach and Mackinnon (1978), Kramer (1980), Busse et &f. (1994) and Kramer and Hassler
(1998), to the recent works of Kleiber (2001), Kramer and Marmol (2002), Butte (2002), Nwabueze
(2000, 2005a, b), Olaomi (2004, 2006), Olaomi and Tyaniwura (2006) and Olaomi and Ifederu (2006).
Tests for detecting the presence of autocorrelation and alternative consistent methods of estimating
linear models with autocorrelated disturbance terms have been proposed.

When the covariance between the explanatory variable and the error terms is non-zero, [ estimate
is biased. The problem becomes near intractable by analytical procedure. Hence we resort to the
Monte-Carlo simulation method for estimation. Olaomi (2004, 2006), Olaomi and Tyaniwura (2006)
and Olaomi and Ifederu (2006) have done considerable work on this.

The effect of certain types of trends on explanatory variables on the relative performance of
estimators has been recognised by Magshiro (1976), Kramer (1998), Kramer and Marmol (2002),
Nwabueze (2005b) and Ifederu (2000). However, some are mainly concerned with asymptotic
properties. Asymptotically disregarding the first observation makes no difference butin small samples,
it may make a substantial difference.

However, in spite of these tests and estimation methods, a number of questions in connection
with the estimation of the classical regression linear model with autocorrelated error terms and non-zero
covariance between the explanatory variable and the error terms remained unanswered. These include
the most appropriate estimation method in the above named specification of the explanatory variable,
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the effect of the degree of correlation of the disturbance term, the effect of the degree of correlation of
explanatory variable and the error terms, the effect of sample size and the sampling properties of the
various estimation methods.

The answers to most of these questions would allow for correct inferences to be made in linear
models plagued by the scenario depicted earlier.

MATERIALS AND METHODS

This study used the Monte-Carlo approach for the investigation due to the non-zero covariance
between the explanatory variable and the error terms. The problem is near intractable by analytical
procedure.

The following four Generalised Least Squares (GLS) estimators: CORC, HILU, ML and
MLGRID and OLS estimation methods, chose in the light of the earlier study are used These
estimators are equivalent with identical asymptotic properties. Kramer and Hassler (1998). But in
small samples, such as in this study, Park and Mitchell {1980) have argued that those that use the T
transformation matrix (ML, MLGRID) are generally more efficient than those that use T*
transformation matrix (CORC, HILU).

The degree of autocorrelation affects the efficiency of the estimators. Nwabueze (2000).
Consequently, we investigated the sensitivity of the estimators to the degree of autocorrelation by
varying tho (p) from 0.4, to 0.8 and 0.9. We also found out the effect of the correlation of the
explanatory variable and the error terms at significant level 1, 2 and 5% on the estimators. The effects
of sample size on the estimators were also investigated by varying the sample size from 20, 40 to
60 each replicated 50 times. Evaluation of the estimators was then done using the finite sampling
properties of Bias (BIAS), Minimum Variance (VAR) and Minimum Root Mean Squared Error
(RMSE).

The Model
We assume a simple linear regression model:

Y, :BD +B1Xt+Ut

2
U,=pU,+5, [p|<l X, =exp(0.4), Ut—>N{0,10— ZJ, (13)

t=1,2..T, b=(L1)

Where

Y, = The dependent variable and the exponential trended

X, = The explanatory variable with U, autoregressive of order one

g, = Normally distributed with zero mean and constant variance o?

p = Stationarity parameter while the model parameters are assumed to be unity

Nwabueze (2005b) and Olaomi and Ifederu (2006) had used this explanatory variable
specification. Tt is chosen to allow for comparison of results.

Data Generation

A total of 27 data sets spread over three sample sizes (20, 40 and 60) each replicated 50 times
were used in generating the data for this study. Using model (13), a value U, was generated by drawing
a random value £, from N (0,1) and dividing by \/ﬁ ). Successive values of e, drawn from N (0,1)
were used to calculate U,. X, was generated as defined in (13). Correlation between U, and ¥, was then
computed and its absolute value tested for significance at say 1, 2 or 5%. If this value is sigmificant,
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it is chosen; otherwise it is discarded. This procedure is repeated as many times as are necessary
to obtain 50 replications for a desired autocorrelation level, significance level and sample size.
Olaomi (2004) had shown that in most Monte-Carlo studies, magnitudes such as bias, variance and
root mean squared are not usually remarkably sensitive to the number of replications. Replication just
shows the stability of estimates. Y, is thus computed for the chosen U ,and X, using Eq. 13. The
computations are made using the Microsoft Office Excel package, different estimation methods are then
applied to the data using the AR procedure of the TSP (2005) package.

RESULTS

The finite sampling properties of estimators we used include the Bias (BIAS), Sum of Bias of
intercept and slope coefficients (SBIAS), Variance (VAR), sum of variances of intercept and slope
coeflicients (SVAR) and the Root Mean Squared Error (RMSE). Sum of RMSE of intercept and slope
coefficients (SRMSE).

The results are shown in Table 1-3 for SBIAS, SVAR and SRMSE, respectively. It is observed
that the slope coefficient is better estimated than the intercept coefficient. All estimators compare

Table 1: Sum of absolute BIAS for estimators of

SBIAS

N=20 N=40 N =60
Significant
level Estimator p=0.4 p=038 0=09 p=04 p=0.8 0=09 p=04 p=08 p=09
001 QLS 0.005009 0.450428 0.239224 0.014815 0404718 0.088869 1.006201 1964755 0.602292

CORC 0.003390 0.203066 0.259223  0.004056 0351630 1.063850 1.019138 2.157200 0.551008
HILU 0007563 0.140343 0.259125  0.005492 0373496 0.020441  1.019833 2.170437 0.643180

ML 0079253 0.531620 0.246570  0.018850 0351630 0.044312  0.395942 1.909964 0.335267
MLGRID 0077056 0.521578 0.245725  0.018892 0354668 0.132082 1.003735 1911003 0.365629
002 OLS 0038347 0.432112 0.234378  0.031272 0073107 0.010028 0.061080 0.052680 0.016135

CORC 0093114 0.514254 0.058886  0.049525 0.154549 0.214001 0.070486 0.112535 0.115842
HILU 0098425 0.477202 0.061104  0.049941 0.153913 0.167934  0.069945 0.111142 0.028218

ML 0032333 0.091967 0.052589  0.0253887 0.021617 0.188730 0.076076 0.052222 0.147962
MLGRID 0.032296 0.087614 0.052541  0.025466 0025314 0.139750 0.076088 0.060481 0.127222
005 OLS 0.002809 0.695589 0.374786  0.043013 0.063635 0.011654 0.027485 2.180319 0.197941

CORC 0001245 0.495695 1.028180  0.039484 0.020547 0.294841  0.027970 2.369191 0.205882
HILU 0003062 0.596955 1.200077  0.038570 0.021626 0.217826 0.027568 2.383139 0.269132
ML 0002601 0.222716 0.304612  0.033631 0.097769 0.107071  0.027701 2.080460 0.076237
MLGRID 0001767 0.237755 0.309286  0.003124 0.114250 0.108726  0.027475 2.085336 0.073104

Table 2: Sum of variance for egtimators of 3

SVAR

N=20 N=40 N=60
Significant
level Estimator p=0.4 p=03 p=09 p=04 p=0.8 p=09 p=04 p=0.8 p=0.9
001 QLS 14392510 39.631670 50.21210 2.793937 9390077 21.321510 2.422304 0.103428 7.894907

CORC 16392730 54.230610 50.78626 2.708986 7.627526 85.668620 2.484753 0.111638 8.066754
HILU 16.410360 59.531010 50.72047 2.712101 10.560990 22.265860 2.483391 0.124387 7.670924

ML 13.873000 33.817280 50.18552 2.717687 7.627526 16.174000 2316879 0.112124 5.889466
MLGRID 13.893360 33.761090 50.13401 2.718191 7.621318 16.623560 2.318689 0.112060 5.919095
002 OLS 9.128794 11.493230 3894294 2.109965 43738466  5.218698 0.904615 2.373364 3.933660

CORC 10.544080 20.160100 42.08693 2.116227 3.668560  5.554659 0.909970 2385010 4.384084
HILU 10.626360 21.235360 42.08084 2.114557 3.641246  5.597309 0.909389 2354664 4.177899

ML 8.585637 11.977040 39.58789 2.095463 3.249357 4192028 0.896570 1.878446 2.888478
MLGRID  8.598644 11.982020 39.59873 2.095337 3.214490 4195878 0.896192 1.855772 2.930921
005 OLS 7.088425 B.817762 1498941 1.664942 3.231835  5.285277 0.704790 0.097103 2.824574
CORC 7.069581 37.204770 3817948 1.594434 3.784588 10.287180 0.708073 0.102081 4.008313
HILU 7.037264 48.388630 4652026 1.586219 3.813670  8.274556 0.708207 0.112027 3.873877
ML 6.794491 11.460310 12.89288 1.604558 2.813553  4.211483 0.691417 0.097295 2.047382

MLGRID  6.815718 11.545750 12.77170 1.636162 2.778412  4.276899 0.690503 0.097160 2.066979
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Table 3: Sum of root mean squared error for estimators of 3

SRMSE

N=20 N=40 N =60
Significant 00000 e
level Estimator p=0.4 p=0.8 =09 p=04 g=0.8 p=04 g=0.38 =09
001 OLS 5213862 8.836849 9.843184 2.167936 4.031450 5.864507 2.554496  2.003732 3.441035

CORC 5.556759 10111460 9.906396 2.132928 3.623928 10.789020 2.573032 2.200186 3.396961
HILU 5.559351 2.218287 3347139 5565426 8912565 4575126 2.572425 7147551 9.719976

ML 5.126579 8.215848 9.844624 2.136884 3.623928 5.090180 2.518379  1.952328 2.885993
MLGRID 5.129741 8.202106 9.839468 2.137209 3.624170 5160235 2.519224 1953072 2.903363
0.02 OLS 4174909 4.469941 B8.638965 1.884968 2.703103 2.914604 1.146733  1.838826 2.338735

CORC 4485882 6.407415 8.958133 1.887833 2.466688 2.979549 1.149778  1.832700 2.442021
HILU 4.503891  1.820320 2.380150 4.200469 6.580619 10.781090 17.361710 28.142800 2.046660

ML 4.051206 4.823765 8.692879 1.877512 2309344  2.596394 1.142683  1.631817 2.000138
MLGRID 4.054000 4.821129 8.694175 1.877430 2.297171  2.583021 1.142434  1.622387 2.009949
005 OLS 3.680740 3.689329 5319606 1.676212 2316450 2926775 1.007969  2.220672 2.007764

CORC 3.672401 8.506014 8.490243 1.638176 2.480684 4.011482 1.009194 2417096 2.335770
HILU 3.664069 2.435779 2311626 4.747405 7.059030 11.806430 18.865470 30.671900 49.537370
ML 3.602589 4.767333 4926101 1.643248 2.160069 2.605469 0997989 2118048 1.682958
MLGRID 3.608102 4.792931 4908753 1.676707 2.150013 2614188 0997319 2.123379 1.690004

Table 4: Summary of ranks of estimators based on optimum trend of bias, variance and root mean squared error for p keeping

o_constant
Criterion OLS CORC HILU ML MLGRID
BIAS 8(1) 3(5) 5(3.5) 5(3.5) 6(2)
Variance 7{2) 6(4) 5(5.0) 7{2) 7(2)
RMSE 7(2) 5(4) 4(5.0) 7(2) 7(2)
Sum of ranks 5 13 13.5 7.5 6
Overall rank 1 4 5 3 2

Table 5: Summary of ranks of estimators based on optimum trend of bias, variance and root mean squared error for p keeping

@ constant
Criterion OLS CORC HILU ML MLGRID
BIAS 5(1) 403) 3(5) 403) 4(3)
Variance 7(2) 5(4) 4(5) 7(2) 7(3)
RMSE 7(2) 5(4) 2(5) 7(2) 7(2)
Sum of ranks 5 11 15 7 8
Overall rank 1 4 5 2 3

favourably with one another in all the criteria used, except HILU estimator using the RMSE
which performed best at the sample sizes 40 and 60. Itis also noticed that as the sample size N
increases, the estimates become better (consistent). As autocorrelation coefficient (p) increases, the
estimates become worse (it increased for both SVAR and SRMSE). Also as the correlation (&) value
decreases, the estimates become better.

The results also show that all estimators are adversely affected as autocorrelation coefficient (p)
is close to unity when the regressor is significantly correlated with the error terms. This is evidenced
by the optimum (p, ) combinations of (0.4, 0.05) as p increases and also as ¢ decreases using both
the variance and the RMSE criteria. There is absence of the combinations of high levels of p and «,
such as, (0.9, 0.01), (0.9, 0.02), (0.9, 0.05), (0.8, 0.01), (0.8, 0.02), (0.8, 0.05), (0.4, 0.01) and
(0.4, 0.02).

The estimators rank as follows in descending order based on combinations of the optimum trends
of Bias, Variance and RMSE: OLS, MLGRID, ML, CORC and HILU as p increases. Table 4 and 5
shows the ranking as o decreases as; OLS, ML, MLGRID, CORC and HILU.

We also investigated the asymptotic behaviour of the estimators in present experiment.
The five estimators rank as follows in decreasing order of conformity with the observed
asymptotic behaviour of bias, variance and RMSE: OLS, ML, MLGRID, HILU and CORC
(Table 6).
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Table 6: Optimum trend ranking of asymptotic behaviour of the estimators

Estimators BIAS VAR RMSE Total rank Position

oLs 6(1.5) 9(2.5) 8(2) 6.0 1

CORC 2(5.0) 9(2.5) 7(4) 11.5 5

HILU 5(3.5) 9(2.5) 3(5) 11.0 4

ML 5(3.5) 9(2.5) 8(2) 8.0 2

MLGRID 6(1.5) 9(2.5) 8(2) 8.5 3
DISCUSSION

The simulation results, under all the fimte sampling properties of Bias, Variance and RMSE
considered show that all estimators are consistent and are adversely affected as autocorrelation
coefficient (p) is close to unity when the trended regressor is significantly correlated with the
autocorrelated error terms. This is similar to Olaomi (2006) results. This also conforms to literature
when there is no correlation between the regressor and the error terms (Johnston and DiNardo, 1997,
Nwabueze, 2000). In this regard, the estimators rank as follows in descending order: OLS, MLGRID,
ML, CORC and HILU.

The results suggest that OLS should be preferred when autocorrelation level is relatively mild
(p = 0.4) and the regressor is significantly correlated at 5% with the autocorrelated error term. This
seams reasonable because the corrective measures incorporated into the GLS estimators make use of
the ‘badly behaved regressor” and these may adversely affect the performance of these estimators. Also
if there is low or insignificant autocorrelation and the regressor and the error terms are mmildly
correlated, OLS should be preferred since there may not be any need for any GLS estimator.

We found that the estimators conform to the asymptotic properties of estimates considered. This
is seen at all levels of autocorrelation and at all significant levels. The estimators’ rank in decreasing
order of conformity with the observed asymptotic behaviour as follows: OLS, ML, MLGRID, HILU
and CORC. This ranking is contrary to that of Olaomi (2006).

We also note that ML, and MLGRID have very similar behavioural pattern, the same for CORC
and HILU as observed in the finite sampling properties of Bias, Variance and the RMSE. ML and
MLGRID are better than both CORC and HILU as also observed by Park and Mitchell {1980).

CONCLUSION

‘We have shown that when there is significant correlation between the exponential explanatory
variable and the autocorrelated error terms ina classical single linear regression estimation problem,
MLGRID or ML estimation method should be used based on the finite sampling criteria used in this
experiment. It is also shown that all the estimators are still asymptotically behaved and consistent, all
estimators are adversely affected as autocorrelation coefficient is close to unity and as the significant
level of the correlation between the regressor and the autocorrelated error term (¢) decreases, the
estimates become better, with MLGRID and ML estimation methods preferred, followed by the
CORC and HILU methods. Though OLS performed best in this experiment, it is disregarded because
it does not correct for autocorrelation in its method. It is only recommended when the degree of
autocorrelation is low and there is very mild correlation between the explanatory variable and the error
terms.
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