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Strong Law of Large Numbers for Nonlinear Semi-Markov
Reward Processes*
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Department of Statistics, Shiraz University, Shiraz, Tran

Abstract: We obtain a Strong Law of Large Numbers (SLLN) for the reward process {Z(1),
tz0}, the cumulative reward gained by operating a Semi-Markov system during the time
interval [0, t]. The important and striking point in this study is leaving the usual assumption
that rewards for each state are of constant rates. In most of applications this frequently used
assumption is not realistic, therefore we deal with reward functions of general forms. The
SLLN obtained is in the sense that Lim,, . Z(t)t = &, a.s. for some real value «. Mild
conditions for this SLLN are existence of sojourn times means and integrability of reward
functions with respect to sojourn time distributions. As it has been shown, the parameter
o coincides with the shift parameter in asymptotic representation of E[Z{1)], t—.
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INTRODUCTION

In this study we deal with long run rate of reward processes defined on a Semi-Markov process,
when the reward functions are not necessarily of linear form. The main difference between this work
and other similar subjects, is inherent in the structure of functionals that we have mentioned. A
Semi-Markov Process (SMP), or equivalently a Markov-Renewal Process (MRP) is an extension of
a Markov Chain (MC) tied with ordinary renewal processes for each state. The successive states
visited by this process forms a Markov chain, while the sojourn time in each state is not a constant
and probabistically depends on the current state and may depend on the next state to be visited. It is
well known that given the sequence of the states, the sequence of the sojourn times are independent.
More details on Semi-Markov processes can be found in Cinlar (1969 and 1975a and b),
Pyke (1961a and b) and Teugels (1976).

For processes with regenerative structure, a cost or reward function is often introduced. The total
cost or reward gained corresponding to the performance of the systemn as a function of the time is called
a reward process. In last decades many authors have considered different aspects of reward processes.
Some have dealt with mean value of these processes and because of complicated forms of exact
solutions obtained, most of these authors have tried for limiting behavior of mean value in long run of
the process.

The definition of a reward process on a Semi-Markov process, backs to the first given by Pyke
and Schaufele in (1964) as:

Wf(t):}ﬁfawlma;aﬂ) o)

Where, J, and £ are the state and epoch of n-th transition and f'is a real valued function. The mean and
variance for these processes in univariate and multivariate case were obtained by Sumita and Masuda
(1987) and Masuda and Sumita (1991), when they considered a reward process of the form:
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Z(t)= [ p(isyds = 2 PUA, ey

Where, A, = £,,-£, is the sojourn time at state . p(k) is a constant at state k. Note that Eq. 2is a
special case of Eq. 1, when f is of constant rate and hence it is linear in A,. They obtained exact
formulas as well as asymptotic behavior for mean value of the process E[Z(t)], t> 0 in univariate and
multivariate case. Soltani (1996), introduced the nonlinear reward process as:

Zt)= 2, PG50 + Py (1) 3

n ~’=n+1<t

Where, v is the age process. The function p in Eq. 3 is called a reward function, where p(j, T) measures
the excess reward when time T is spent in the state j. A closed form for mean of this process, when the
reward functions assumed to be polynomials in time was obtained by Soltani {1996). Khorshidian and
Soltani (2002 and 2003), obtained E[Z(t)] and Var[Z(t)] the expected value and variance of Z(1), as well
as X(t), the covariance matrix for a multivariate reward process with components as Eq. 3. Using
Markov-renewal theory and for general p(.,.), Soltani and Khorshidian (1998), showed that

E[Z{)]= o + o, t+e(l), t—>e )

Where, the constants ¢, and o, were fully specified. For reward fimctions of general form and in
multivanate case, Khorshidian and Soltam 2002, used supplementary varables technique and showed
that as t — oo,

EZOI= A+ At 20 C teal) 5

Moreover, they calculated the vectors Ay and A, and matrices C,and C,.

In probability theory it is well known that for a sequence of random variables {X.n=1, 2, ...},
with partial means (partial sums) {Y, n = 1,2, ...}, if the limits exist and are constant values,
lim,_, E[Y,] does not necessarily coincides with lim,_,, Y,. In what follows we will show that under
some mild conditions lim,,_, Z(t)/t =1im,,_ E[Z(t)]/t, this is the SLLN we purposed.

To arrive at the mentioned strong law for the process Eq. 3, since the reward functions p(.,.)
assumed to have general forms, it is natural to impose some conditions on it. Most of the conditions
we need are about integrability of p, just what has been done for caleulating moments of Z(t), by
Soltani and Khorshidian (1998) and Khorshidian and Soltani (2002).

NOTATION AND PRELIMINARIES

Let {J(f), t=0} be a SMP with a MRP, {(J, £), n=0, 1, 2, ...}. The state space of {I} is
assumed tobe E = {s,, 5,, ..., 8,.}. ], and £, are the state and epoch of n-th transition nz 0 with £, =0.
Alsolet A, =¢ . -&, denotes the sojourn time at J,. The transition probabilitics are purposed to be

PIJ, =j.A, X8, 8300, =i] = PW,=j A, <x|I, ~i]
= A0,

A (x)=P,E(x), where P, = A (+w) are transition probabilities of the embeded Markov chain and F{(.

il

is the distribution of sojourn time at state i. The mean sojourn time at state i is:
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mii)= [ XF (dx)

The invariant stationary distribution of the underlying MC is n=(w), i€E. n=nP and p, is the
initial probability row vector with p,(i)=P[J, =i], icE .

The number of transitions in [0, t] is denoted by N(t). It is well known that if the SMP is
irreducible, recurrent and the sojourn times have finite means, then

hm@ =8', 8=Ymmi) (©)

=

The elapsed life of the process after the last transition is the age process (1) =t—&y,, .

Throughout the study we assume that the reward functions p in Eq. 3 are nonnegative. For reward
functions with possibly negative values, without loss of generality and by adding a constant finite
value M, all of the undergoing results goes true, provided that infeepe mimepk,u)>-M

SLLN FOR REWARD PROCESSES

In this section, using limit theorems for MC's and under integrability of reward functions p(J.,),
with respect to the sojourn time distributions F,(.), we will arrive at a SLLN for Z given by Eq. 3.

Let {(J, E);n=0,12,..} ba an irreducible MRP, with finite state space E and corresponding
SMP, {I(t), t=0} with = as the invariant stationary distribution of the underlying Markov chain
{J,, n=0}. Tt is well known that when the state space is finite, the corresponding MC and MRP are
positive recurrent and in this case,

]jr}}(lfn)if(Jn) =E,[fT)]=Ynf(). as (M)

jeE

for any real valued function f. In the next theorem we will drive more general limiting results for
sumnmands similar to Eq. 7, with a bivariate reward function p: Ex[0, «)—[0, «) instead of f and a MRP
instead of the MC. Thereafter we will show that a SLLN holds for {Z{(t), t=0}, in the sense that
lim, . Z(t)/t exists, under the assumptions that

8,(i)= [ P10 (d) and m(j)= [ uF,(du)

are finite forall je E.

Theorem 1
Suppose that {(J,, &), n=0} is an irreducible recurrent MRP with finite state space E and
stationary distribution = . Also suppose that max , m, and 0,(j) <e, for all j € E, then

1j_m@ =86 (jj=c, as

e B =
where, Z(t) is given by Eq. 3 and & by Eq. 6.
Proof: First note that,
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aN(() =t aN(()H a'nd Z(aN(()) < Z’(t) = Z(‘:N(()ﬂ)

and therefore,

N(t) Z(Ey) <@< Z(&ypa) N(t)+1 (8)
Gug N+ L N &)

Also irreducibility assumption and finiteness of E implies that, lim,__(Ni{t}t)=8 ' a.s., which gives

NO o NO+l_ ©)

lim, -
&JN(()-H ‘:N(U

1=

Moreover,

Z(‘:N(t)) = 1i Z‘(&JN(I)H)

= NO+1 TN

n-1
= Lm(Vm)> pl,. A,)
n—eo k=0

(10)
= 2l pGwaw
- aneu §)]

jeE

by the fact that N(t)—« as t —c and the argument will been given below for Eq. 10, Soby Eq. 9
and 10

0 N L)
e L e Ly N

NQ P
== Ly &= N()
= S'IZnJ.BD(j).

JEE

It remains to show that Eq. 10 holds in the sense that:

n-1

]}_])’Ll(lfn)zp(:[k > Ak) - znjeu (.])

=

To do this, denote by N, (1) the mumber of visits to state 1 during first n-th transitions of the MRP and
by subsequence k(1, i), k(2,1),... those indices at them the process visits i. Also, by Yy ;, Yy, denote
the sojourn times in state i, during the above subsequence. Given I, I, J,,..., the subsequence Y, ;,
Yy, are IID with distributions F,. Moreover, by Positive recurrence of the underlying MC, N, {i}—e
as n—o for all ieE and therefore by SLLN for IID random variables we have:

)
N & P0T) > BLY)

. (11)
= [,pG.yIE(dy)

61
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Thus

>

(1fn)§5p(1k,Ak) = (1/n)§2p(Jk,Ak)1M

k=0 i€E

(D)
= (/) Y pl.Y,,,) 42
(@)
N@= 1
Zh Z et

Since the MRP is assumed to be irreducible, recurrent with finite state space, we conclude that as n—-,
N, (1)¥n—m, and therefore Eq. 11 and 12 imply that:

g N (i) i) 1
im(1/n Tod) = limp, == ),
im0y p0.A) = tim3 = S

= 2m0,3)

PLL Yy, () 43

The proof is now complete.

Remark

As it has been expected, the limiting value ¢ in Theorem 1, coincides with slope parameter ¢, in
Eq. 4, which has been derived by Soltani and Khorshidian (1998), for asymptotic representation of
E[Z(1), t—><. Also it coincides with elements of the vector A, in Eq. 5 for multivariate {Z(t), t=0,
Moreover the assumptions on the reward functions and sojourn times for the above SLLN, are just as
that which has been assumed for existence of E[Z(1)], t—c (Khorshidian and Soltam, 2002).

In the Theorem 1, finiteness of the state space is only used for embedded MC to have positive
recurrent states. Ifin the infinite state space case, we impose conditions that by them, the states would
be positive recurrent, then the result of this theorem hold. Therefore, we can arrive at the following
corollary.

Corollary
Suppose that {(T, £), n>0} is an irreducible positive recurrent MRP with infinite state space E
and stationary distribution = . Also suppose that m,<e and 0,(j)<e, for all j € E then

h'm@ —5 R0, (=0, as

tpm EE

where Z({t) is given by Eq. 3 and & by Eq. 6.
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