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Abstract: The dependence relationship between two sets of variables is a subject
of interest in statistical field. A frequent obstacle is that several of the explanatory
variables will vary in rather similar ways. As a result, their collective power of
explanation is considerably less than the sum of their individual powers. This
phenomenon, called multicollinearity, is a common problem in regression analysis.
The major problem with multicollinearity 1s that the ordinary least squares
coefficients estimators involved n the linear dependencies have large variances. All
additional adverse effects are a consequence of them. Tn statistical literature several
methods have been proposed to counter with multicollinearity problem. By a
simulation study and considering different case of collinearity among the
regressors, i this paper we have compared, using RV coefficient, five statistical
methods, alternative to the ordinary least square regression.

Key words: Partial least square regression, principal component regression, ridge
regression, multivariate simple linear regression, principal component
analysis onto references subspaces, multicollinearity

INTRODUCTION

In many frameworks, the statistician is mterested in the relationship between two sets
of variables defined for the same statistical units. The first set of variables contains the
predictor variables, the second set consists of response variables.

This topic can be approached from different perspectives. The simplest approach
consists in investigating the relationship between each variable of the first set and each
variable of the second one (for example, by using the correlation coefficient). Otherwise, an
asymmetric point of view can be adopted, where each one of the dependence variables can
be explained and predicted by all the predictor variables. Finally, another way to proceed 1s
to globally relate the two sets of variables.

There are different strategies to explore the association between two sets of variables,
the first approach was the Canonical Correlation Analysis and its generations (Carrol, 1968,
Kattering, 1971).

In regression, the objective 1s to explain the variation in one or more response variables,
by associating this variation with proportional variation in one or more predictor variables.
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A frequent obstacle is that several of the explanatory variables will vary in rather similar
ways. As aresult, their collective power of explanation is considerably less than the sum of
their mdividual powers. This phenomenon, called multicollinearity, 1s a common problem in
regression analysis. Multicollinearity is the effect of having a very high a correlation between
variables. At its extreme, there may be a perfect correlation which results in a singular
correlation matrix. However, even when we do not reach this extreme, the high correlation
causes problems: because of the redundancy in the variables, we may have an 1ll-conditioned
correlation matrix which 1s very prone to large variances which may be due to noise in the
data set.

The ordinary least squares estimators of coefficients of variables, in presence of
multicollinearity, have large variances and therefore also the estimates are often large and
may have signs that disagree with known theoretical properties of the variables.

In statistical literature several methods have been proposed to counter this problem. A
subset of these does so by finding components that summarize the information in the
predictors and the dependent variables. This paper compares by a simulation study the
performances of five alternative methods: Ridge Regression (RR), Principal Component
Regression (PCR), Partial Least Square Regression (PL.SR), Principal Component Analysis
onto References subspaces (PCAR) and a new approach called Multivariate Simple Linear
Regression (MSLR).

Statistical Methods for Dealing with Multicollinearity Notation

The data set consists of scores on predictor variables and dependent variables. The
notation used here 1s: X (nxp matrix with scores of n statistical umts on p predictor
variables);, Y (nxq matrix with scores of n statistical units on q dependent variables), X'X
(p=p matrix with correlation score between predictor variables). Tt should be noted that X and
Y are assumed to be standardized columnwise.

Ridge Regression

RR is a popular method for dealing with multicollinearity within a regression model. Tt
is the modification of the ordinary least squares method that allows biased estimators of the
regression coefficients (Hoerl and Kennard, 1970). The idea 1s the following. Since the matrix
X'X 18 ill-conditioned or nearly singular one can add positive constants (penalty) to the
diagonal of the matrix and ensure that the resulting matrix is not ill-conditioned. The
estimators are biased, but the biases are small enough for these estimators to be substantially
more precise than unbiased estimators. Since they will have a larger probability of being
close to the true parameter values, the biased estimators are preferred over unbiased ones.

In RR the coefficients [ are estimated by solving for by in the equation:

(XX +8l)b, = XY (1)

where, 0<0<1 is often referred to as a shrinkage parameter and [ 1s the identity matrix
(dimension pxp). Thus, the solution for ridge estimator 1s given by:

by = (XX + &) XY 2

In order to choose the shrinkage parameter there are various procedures. The ridge trace
is a very convenient technique. Using a plot, it allows to visualize the regression coefficients
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against the shrinkage parameter when this last one increases. The value of § is chosen at the
point for which the coefficients no longer change rapidly. The stability does not imply that
the regression coefficients have converged. As & grows, variances reduce and the
coefficients become more stable.

A simple consumption function is used to illustrate two fundamental difficulties with RR
and similarly motivated procedures. The first is the ambiguity of multicollinearity measures
for judging the ill-conditioning of data. The second 1s the sensitivity of the estimates to the
arbitrary normalization of the model. Neither of these poses a problem for least squares
estimations.

Principal Component Regression

The PCR has been mtroduced to handle the problem of multicollinearity by eliminating
the model instability and reducing the variances of the regression coefficients (Massy, 1965).
In the first step, the methodology performs the Principal Component Analysis (PCA) on the
predictor variables and in the second one it runs a regression using the principal
component scores as the predictor variables with the response variable of interest.
Combining both steps in a single method will maximize the relation to the response variable
(Filzmoser and Croux, 2002).

Let V and Z = XV be the orthogonal matrix of eigenvectors of the correlation matrix X'X
and the principal component scores (Hocking, 1996).

Hence, the original regression model is written (in the form) as:

Y=XVF*+E=ZF +E (3)

where, [J*° 1s a kxq vector of population parameters corresponding to the principal component
7., E is the error matrix. In order to underline the relationship between the coefficient of the
Multivariate Linear Regression and RR, the Ordinary Least Square (OLS) estimate of B* can
be written as:

b =(22)" 27 = (VX'XV) VXY = V(X'X) XY = VbR (4)

The question in PCR is which principal components should be kept in the regression.
Many statisticians argue that the decision depends only on the magnitude of the variance
of principal components (Jolliffe, 1982); however there are some examples in which the
principal components of small variance must be selected (Mardia et al., 1979).

The two procedures based respectively on statistical tests and the minimization of the
unbiased residual variance are not quite compatible and users have to choose between them.

The elimination of at least one principal component, that 1s associated with the smallest
eigenvalue, may substantially reduce the total variance in the model and thus produce an
appreciable improvement in prediction equation.

The main problem of this approach is that the magnitude of the eigenvalue depends on
X only and has nothing to do with the response variables;, moreover, selecting the amount
of the principal compenents to be included in regression models 1s not simple.

Partial Least Squares Regression

PLSR was developed in the fust decade of the 70s (Wold, 1966), it has been
used extensively in chemistry and its statistical properties have been investigated by, for
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example, Stone and Brooks (1990), Naes and Helland (1993), Helland and Almoy (1994),
Helland (1990) and Garthwaite (1994).

The goal of PLSR is to predict Y from X and to describe their common structure when
X is likely to be singular and it is no longer possible to use the regression approach because
of multicollinearity problems.

The criterion of PL.SR is to minimize the sum of squared residuals between response Y
and a model of Y, which 18 a linear combination of the variables in 3. In PLSR the
components are obtamned iteratively. The first step is to create two matrices: E=X and F=Y.
Starting from the Singular Value Decomposition (SVD) of the matrix S = X'Y, the first left
and right singular vectors, w and ¢, are used as weight vectors for X and Y, respectively, to
obtain scores tand u: t = Xw = Gw,u=Yq = Fq.

The X scores t are normalised by t=t/+ftt . The Y scores u are saved for interpretation
purposes, but are not necessary in the regression. Next, X and Y loadings are obtained by
regressing against the same vector t p = G't, g = F't.

Fmally, it 1s subtracted (1.e., partial out) the effect of t from both G and F as follows:

Gn+1 = Gn_tp':- Fn+1 - Fn-th

Starting from the SVD of matrix G',,,F.,,, it is possible to estimate the next component.
Vectors w, t, p and q are then stored m the corresponding matrices W, T, P and Q,
respectively.

Now, we are in the same position as in the PCR case, instead of regressing Y on X, we
use scores T to calculate the regression coefficients and then convert these back to the realm
of the original variables by pre-multiplying with matrix R (since T = XR):

B=R(T'T) TV = RQ/ (5)

Again, here, only the first ¢ components are used. The criterion used to determine the
optimal number of the components is Cross Validation (CV). With C'V, observations are kept
out of the model development, then the response values (Y) for the kept out observations
are predicted by the model and compared with the actual values. The Prediction Error Sum
of Squares (PRESS) is defined as the squared differences between observed Y and predicted
Y values when observations are kept out.

For a given compenents, h, the fraction of the total vanation of the Y that can be
predicted by it is described by Q7 which is computed as:

i =1.0- PRESS/SS

where, 83 is the residual sum of the squares of the previous components (h-1). When Q7 is
larger than the significance lunit, the test component is considered sigmficant. If all the
components of X are extracted from X, this regression 1s equivalent to PCR.

PCR is a combination of PCA and Ordinary Least Squares regression (OLS). RR on the
other hand 1s the modified least square method that allows a biased but more precise
estimator.

PLSR is similar to PCR because components are first extracted before being regressed
to predict Y. However m contrast, PLSR searches for a set of components from X that are
also relevant for Y that performs a simultaneous decomposition of X and Y with the
constraint that these components explain the covariance between X and Y as much as
possible (Abds, 2003).
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Theoretically, PL.SR should have an advantage over PCR. One could imagine a situation
where a minor component in X is highly correlated with Y not selecting enough components
would then lead to very bad predictions. In PLSR, such a component would be automatically
present in the first components. In practice, however, there 1s hardly any difference between
the use of PLSR and PCR; in most situations, the methods achieve similar prediction
accuracies, although PLSR usually needs fewer principal components than PCR. Put the
other way around: with the same number of principal components, PLSR will cover more of
the variation in Y and PCR will cover more of X. In turn, both behave very similarly to ridge
regression (Frank and Friedman, 1993).

It can also be shown that both PCR and PLSR behave as shrinkage methods
(Hastie ef af, 2001), although in some cases PLSR seems to increase the variance of
mndividual regression coefficients.

Principal Component Analysis onto Reference Subspaces

From a geometrical point of view, Principal Components Analysis onto Reference
subspaces (Ambra and Lauro, 1984) consists of searching the inertia principal axes of the
image of the Y variables obtained, onto the subspace spanned by the X variables, using a
suitable orthogonal projector operator.

Aim of the analysis 1s to choose the Y subsystem structure with respect to the X, taking
nto account the principal component associated with it.

Let R be a vector space sized ptq and R, the R vector subspaces spanned by matrix
column; the image of the subsystem described by Y on this subspace is obtained through
the orthogonal projector-operater Px = X(X'X)™ X'. The Y projector on R having been
effected ¥ = P.Y.

The PCAR consists in searching a subspace of R, (principal axes) through the extraction
of the eigenvalues and eigenvectors (o = 1..., h) of the expression:

Y'P_Yu, = Au,

where, P,Y being symmetrical and positive semidefinite; it derives that ,>0 and v’ u, = 0 with
LA,

An often overlooked, but nevertheless sigmficant problem in analyzing data 1s that of
multicollinearity, or non-orthogonality, among the independent variables (X). The condition
of multicollinearity is not, of course, limited to the PCAR but is, in fact, a pervasive and
potential problem in all research in the family studies field

Multivariate Simple Linear Regression

In order to overcome the multicollinearity problem of predictor variables, we propose an
alternative approach based on simple linear regression. Starting from X and Y matrices we
perform pxq simple linear regression between each variables y,, ke (1, ..., @) onx, je(1, ..., p),
therefore we score the regression coefficients in the square matrix B of dimension pxq.

B, 0 0 [, 0 0
B=|0 Bk 0 B, = 0 T [ 0
0 0 B 0 0

Yul*p
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B is a g-block data-matrix, in which each block B, has the main diagonal composed by
the regression coefficients between the varable v, onx;, = 1, ..., p):

Then considering the pxq simple linear regressions, we run the prediction values ¥
(Merola and Abraham, 2000, Ambra et af., 2001} and store them in a data-matrix:

¥ =[XB,|XB, |..|XB, | .| XB, | (6)

In computing the PCA of Y and observing the matrix to diagonalize we develop the
following expressions:

YY'=XBBX +XB,B,X +..+ XB,B,X +..+ XBB X’

Y= X[inBk}X’ 7

k=1

o~ q
YY" =XHX' where H _{ZBkBkJ
k=l

They allow us to show as this approach could be viewed as a PCA of the prediction data
matrix X with a particular metric expressed by a diagonal positive-definite matrix H” The jth
term of the main diagonal of this matrix represents a measure of the importance of the
predictorx, (j =1, ..., p) to explain all the dependent variables. This information could be used
in order to choose the prediction variables to include in the model.

Hence, it is possible to consider this technique as a weighted PCA of X with weights
proportional to the simple linear regression coefficients: we call it Multivariate Simple Linear
Regression (MSLR). This approach could be seen as a generalization of the univariate PL.S
proposed by Garthwaite (1994).

If we take into account the matrix to diagonalize in the variable space, we can write it in
term of Sum Square Regression (SSR) of the y on each x, infact we have:

[a
NSSR(¥, %)
k=1

H%X’X}I% - ZSSR(Yk ‘ XE)

k=1

;:SSR(yklxp)

We, can underline as:

(B |

4 B B
ZESSR(yk|xJ) =¥,
=l j=l o=l

k

this expression allows us to say that the sum SSR between each v, (k = 1,..., q) on each
% =G =1, ., p) is equal to the sum of the eigenvalues. If the variables are assumed
standardized, every SSR can be interpreted as a determination coefficient (R%).

We can study MSLR results in the space of the variables and statistical units. In
particular the coordinates of the statistical units and the variables on the alphath axis are:
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Q, = XH%HB Yy, = [Y\ XH%J u, (8)

where, u, and v, are the eigenvectors corresponding to the alphath eigenvalue. If we
construct the factorial plan with the representation of predictor and dependent variables, we
can compare the angle between variables in order to evaluate their relationship.

It’s possible to show that the principal components @, could be obtained as the
minimization of the criterion:

)

j=1,..p 1s the simple orthogonal projector-operator.

ijyk - (P(PFPijkHE

where, Px, =% (XSXJ)_I X
Simulation Studies
The Simulation Plan

The data system was composed by two artificial matrices X (predictor variables) and Y
(dependent variables) with 10000 statistical units and six and five variables respectively. The
simulation regards the X, particularly for each degree of correlation between the X’s variable
100 matrices were generated. We shall also assume data are standardized by subtracting
means and dividing by the standard deviation.

The correlation degrees mwvestigated between X's variables were 13 (0; 0.1, 0.2; 0.3, 0.4;
0.5, 0.6;0.7; 0.8; 0.9, 0.95; 0.99; 0.999); particular attention to high level was paid.

The simulated data of the X were generated according to Cholesky algorthm
(Olkin, 1985). The different five statistical methods discussed above were applied to these
data.

The same simulation scheme has been repeated five times and for each of them all the
statistical methods were calculated.

For each method the estimated values were calculated (Table 1) and then they were
stored m a data-matrix. A PCA was performed on the estimated values; in Table 1 we
represented the operator, the characteristic equation and the Criterion to mimimize for each
method.

Then, we have taken mto account the first two components that guaranteed a
percentage of explicated variability greater than 70%. Next, to the purpose to measure the
similarity among the results achieved with each method, the mean of RV coefficient
(Escoufier, 1970) has been computed for each pair of methods in the five simulations.

The RV coefficient quantifies the similanty between two data-matrices. It 13 a measure
of the relationship between two sets of variables and it is based on the principle that two sets
of vanables are perfectly correlated if there exists an orthogonal transformation that makes
the two sets coincide.

Let X and Y be two matrices corresponding to two sets of variables defined for the same
n statistical umits. If X and Y are centered by columns, the RV coefficient 1s defined by:

Table 1: Summary of the main characteristics of the statistical methods used in simulation study

Method  Operator Characteristic equation Estimated values  Criterion to minimize
PCAR Px=X(XX)'X YP; Yu, = Au, Y =PY min [(P,Y-d, 3P, Y)]
PCR Pr =Ty ('I"(PCA)T(PCA)T1 Teesy YPr Yu, = Au, Y= PrY min [(PrY-b, b PrY)Y]
RR Pop = XXX+ 1 X' Y 'Prp, Pre Y11, = A1, ¥ =P PreY min [(Prg Y-, 3, Pre ¥)?]
PLS Prrs = Tiprsy (T T(PLS))_IT'(PLS) YPps Yu, = Au, Y= Prs Y min [(Pprs V=o', Pprs Y]
MSLR P =x&x)'xj=1..p H* XXH* u, =Au, ¥ =XH* min [(XH"*-¢, &', XH*)]
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trace{XXYY']

R \/trace [XXXX o trace{YYYY'} ©)

The RV coefficient takes values between 0 and 1 for positive semi definite matrices. If
we have a look at the numerator, it equals the sum of the square covariance (or correlation
if the variables are scaled) between the variables of X and the variables of Y. Tt is therefore
a square correlation coefficient.

This expression mnplies that RV(X, Y) = 1 if and only if the distance between the two
data matrices is zero (d(X, Y) = 0).

RESULTS

In order to compare the component based methods described above to each other and
to MSLR we constructed a graphical representation of the five simulations. We represented
the RV coefficient against different levels of correlation between X’s variables.

SLR-RIDGE had an RV coefficient that swells when the correlation between the Xs
variables increases (Fig. 1); in particular, if correlation is greater than 0.90, the RV 1s very
close to one (Fig. 2).

1.001

0.754

0 035 0.50 0.75 1.00
Comrelation

Fig. 1: MSLR-RR (RV coefficient vs. correlation degree)

1.00
0.751 /
E 0.50
0.25
0.00 T T T 1
0.25 0.50 0.75 1.00
Correlation

Fig. 2: MSLR-RR (RV coefficient vs. correlation degree)
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The relationship MSLR-RIDGE has been analysed varying the ridge parameter for five
different values (0.2; 0.4; 0.6; 0.8; 0.9). We observed that when the correlation was smaller
then 0,4 the RV coefficient was about 0,6, independently from the ridge parameter (Fig. 3).

Differently, when the correlation was included between 0.6 and 0.9, the behaviour of RV
was a little bit different varying the ridge parameter. If the correlation was very close to one
(1>0.98), the RV focused to one independently from the ridge parameter (Fig. 3).

MSLR seemed less and less similar to both PCAR and PLS, when the correlation
mcreased. Particularly, when the correlation between X's variable was low the RV value for
the three methods was about 0.50 (Fig. 4, 5).

—

1.00+

0.754
2 0.50-
0.251

0.00: T T 1
0.85 0.90 0.95 1.00

Correlation

Fig. 3: MSLR-RR(1) (RV coefficient vs. correlation degree)
1.00-

0.75+

Z 050

0.25+

0.00

0.85 0.25 0.50 0.75 1.00
Correlation

Fig. 4 PCAR-MSLR (RV coefficient vs. correlation degree)

1.00A

0.751

0.25

é‘-

0.00 025 0.50 0.75
Carrelation

Fig. 5. MSLR-PLS (RV coefficient vs. correlation degree)

77



Asian J. Math. Stat., 3 (2): 69-81, 2010

PCAR and PLS were very similar (RV>0.80) for whatever correlation value, however the
trend decreases (Fig. 6).

The similarity between RIDGE-PLS fell off when the correlation increased (Fig. 7). PCAR-
RIDGE were similar when the correlation between X’s variable was low (r<0.5). Then the

methodologies became very different (Fig. 7, 8).
The PCR had a likeness medium with the other methodologies (PLS-SLR-ACPR-RIDGE),
independently from the correlation level between X's variables (Fig. 9-12).

1.001
0,75
2 0.50

0.254

0.00 T T T
0.00 0.25 0.50 0.75 1.00

Correlation

Fig. 6: PCAR-PLS (RV coefficient vs. correlation degree)
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0.25-
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Fig. 7. RR-PLS (RV coefficient vs. correlation degree)
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Fig. 8 PCAR-RR (RV coefficient vs. correlation degree)
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1007
0.75
Z 0.501

0.25+
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Fig. 9 PCR-PLS (RV coefficient vs. correlation degree)
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Fig. 10: MSLR-PCR (RV coefficient vs. correlation degree)
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Fig. 11: PCAR-PCR (RV coefficient vs. correlation degree)
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Fig. 12: PCR-RR (RV coefficient vs. correlation degree)
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CONCLUSION

In this study we have considered the problem of the multicollinearity in the analysis of
dependence between two sets of variables defined for the same statistical umts. In particular,
we compared the main methods recommended in literature to counter this problem and
proposed a new approach called MSLR. Tn order to evaluate the behaviour of these methods
we have performed a simulation study, in which we can remark: in the first place, PCR shows
a middle similanty with all the other methods, probably because it transforms the X variables
in an orthonormal basis of variables eliminating the collinearity between predictor variables.

Secondly, considering the situation where the collinearity of X variables is almost 0.9
(very high collinearity) we have observed that MSLR 1s very similar to RR, independently
from the ndge parameter. Thus characteristic allows to consider MSLR as a possible solution
to use in presence of multicollinearity. Moreover, as shown in the previous paragraph, MSLR
supplies in addition a very useful and simple interpretation of the estimated coefficients and

the graphics.
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