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ABSTRACT

Parametric Seemingly Unrelated Regression (SUR) models are used for multivariate regression
analysis. However, statistical literature has revealed that, multacollinearity often affects the

]

efficiency of SUR estimators. One of the popular methods for coping with Multicollinearity problem

1s ridge regression estimation. In this study, some alternative ridge estimators for SUR parameters
are proposed when the explanatory variables are affected by multicollinearity. The efficiency of the
proposed estimators 1s evaluated and compared through simulation study, in terms of the Trace

Mean Squared Error (ITMSE) and the Proportion of Replications, (PR) criterion, under a variety of
data conditions. The empirical results indicated that, under certain conditions, the performance of
the multivariate regression estimators based onnsome SUR ridge parameters are superior to other

estimators in terms of TMSE and PR criterion. Indarge samples and when the collinearity between

the explanatory variables 1s not high, the®unbiased SUR estimator produces a smaller TMSEs.

Key words: Multicollinearity, SUR regression, Monte carlo simulations, biased estimators,
ceneralized least squares

INTRODUCTION

The Seemingly Unrelated Regressions (SUR) model proposed by Zellner (1962) 1s considered
as one of the most suecessful and efficient methods for estimating seemingly unrelated regressions
and tests of aggregation bias. The resulting (SUR) model has simulated a countless theoretical and
empirical results in econometrics and other areas, (Zellner, 1962; Brown and Zidek, 1980;
orivastava and Giles, 1987; Saleh and Kibria, 1993; Fiebig and Kim, 2000). For example the
methodology 1s applicable to allocation models, demand functions for a number of commodities;
1nvestment functions for a number of firms, income or consumption functions for subsets of
populations or different regions, to mention some.

In most of the empirical studies, researchers are often concerned about problems with the
specification of the model or problems with the data. In the sequel, our interest lies in data type
problem, namely multicollinearity which arises in situations when the explanatory variables are
highly inter-correlated. Then, it becomes difficult to determine the separate effects of each of the
explanatory variables on the explained variable. As a result, the estimated parameters may be
statistically insignificant and/or have (unexpectedly) different signs. Thus, to conduct meaningful
statistical inference would be difficult for the researcher. One such remedial estimation technique
1s ridge regression. The class of ridge regression estimators was originally developed to deal with
the problem of Multicollinearity in the linear regression model and contains estimators which

although may be biased may have smaller MSE, than their unbiased counterparts. Much of the
discussions on ridge regression concern the problem of multicollinearity have been proposed by
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Gujerati (2002), Kibria (2003), Alkhamisi et af. (2006), Alabi et al. (2008), Agunbiade and
Ivaniwura (2010), D'’Ambra and Sarnacchiaro (2010), Bagheri et al. (2010), Batah et al. (2009),
Camminatiello and Lucademo (2010) and Oluwayemisi et af. (2010).

The objective of the study 1s to investigate the properties of some alternative proposed estimators
assoclated with system-wise ridge estimation using different multivariate ridge parameters, since
this topic 1s often only briefly mentioned in the literature and to make a comparison among them

with other known existing estimators based on terms of TMSE and PR criterion.
Alternative SUR-Ridge type estimators: Consider a system of M equations given by:
Y=XPB+e, i=1,2, . M (1)

where, Y.1s a (I'X1) vector of observations on the dependent variable, e, 1s a (1x1) vector of random

errors with K (e,) =0, X, 1s a (I'Xn,) matrix of cbservations on n;explanatory variables including a
constant term and . 1s a (n;X1) dimensional vector of unknown location parameters. M i1s the
number of equations in the system, T 1s the number of observation per equation and n, is the
number of rows 1n the vector J..

Let Y=(Y,.Y,.......... Y, ), X=diag (X, X,,......... ,X,,) and similarly e and  are defined. Then the
M equations in (1) can be written in the compact form as:

Y= X Bte (2)

I
where, Y and e are each of dimension (ITMx1), X 1s of dimension (I'Mxn), n=>m, and P 1s a n-
dimensional vector of locatien parameters. i
Furthermore, consider the following assumptions:

« X 1s fixed with rank n,

e« Plim ! (X X )=0. 1s non-singular with finite and fixed elements, 1.e., invertable
T 1 1 i1

e Assume that Plim !

T

« K (e, eii) c, I where o, designate the covariance between the ith and jth Kquations for each

(XX )=Q. 1s non-singular with finite and fixed elements
1 1 11

observation in the sample. The above expression can be written as:

K (e) =0 and kK (ee’), Lel,, where:

O Oy, Oy
G G G
51 2% 5 oM
b= .
| Ot Onres Oumg

1s an (IMXxM) positive definite symmetric matrix and represent the kronecker product.
Thus, the errors at each equation are assumed to be homoscedastic and not autocorrelated but
that there 1s contemporaneous correlation between corresponding errors in different equations.
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The OLS estimator of f in Kq. 2 1s:
B=(X'Y)'X,Y with Var(B)=(X'X)'X' (T @ L)X(X")™' (3)
In the context of SUR model, the general ridge regression estimator of 3 1s
Bor =(X'X+R)'X'Y (4)

where, R 1s an (nxXn) matrix of nonnegative elements. However, because the ridge estimator in

Eq. 4 does not include the cross equation correlation among errors (Srivastava and (Giles, 1987),
thus, the following transformation 1s suggested:

Y = (T ¥2l)Y, X' = (2 el,) Xand " = (5126l e

Using the above transformation, the model indq. 2 can be expressed as:

Vo= X" e (5)

where, Y~ and e” are (MTx1) vectors, X*is an (MTxn) matrix, E (¢")=I,,, and E (¢")=0.
Accordingly, the Generalized Lieast Squares (GLS) estimator of f in (5) and its ridge version are,
respectively given by:

Bor =X X)X (6)

B, =(X" X"+ R)TX"Y 'with MSE (B, )=(X"'X" +R) (RBP'R+ X "X )X "X +R) (7)

). let A and ¥

(a
designate the eigen values and eigenvectors of, respectively. Then ¥' X"X") ¥ = A and the
canonical version of model (5) 1s given by:

oet R =0 in the expression for MSE (E}GR) to obtain an expression for MSE (

Y =Za+e (8)

where, Z=XY, ¢« =¥V'p and 27 = (P X"'XP) = A.

The corresponding GLS estimator of « 1s:
a=(Z'Z+R)'Z2'Y" (9)
and the expression for the corresponding SUR-ridge regression parameter 1s:
e =(Z'Z+R)'Z'Y (10)

where, R = diag (R, R, ..., Ry, Ry =diag (xy;, ryg, ..., 1y,) andr; >0fori1=1, 2, ... .. , M. Moreover,

the bias vector, the mean squared error matrix of and trace of MSE (0, ) (TMSE) are, respectively

given by:
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E (8 ) - = - (ZZAR)™ Ret, MSE (&) = B (6 gypett) ( gy ) (1)
MSE (G )= E (G @) (O )" = [(A+R) ™ A-T] awe’ [(A+R) ™ A-IJ'+HA+R) ™ A (A+R)™
= [(A+R)7 (A4R aca' R) (A+R)™ (12)
and
il A A+ rf rci,f (13)
TMSE(& ,, (R)=2xi 1 4
i e (?L‘ij ik rij)
Now, set 8 TMSE (¢ p, ) o to determine the optimum values of x; as:
5.
1]
1 (14)
LY

4

Moreover, conditions to ensure the superiority of o, (R) over & with respect to the MSE

criterion are given in the following result.

Result 1;

o  MBE (& )-MSE (&, R)) is a positive gemidefinite matrix if:

o (A~ + 2R a<1 (15)

« Sufficient conditions for kq. 15 to hold are:

(Mo Aol (m) o’ Ra<2 (16)

Set R =rl in Eq. 10, to show that MSE (& )-MSE (&, (R) is a positive semidefinite matrix if:

y) (17)

oL L

The following result presents some alternative methods for constructing SUR-rdge parameters:

Result 2: Forj=1, ...,n,;1=1, ...., M, assume Eq. 14 holds, then:

1 2

* Rg. Theij-th component of this matrix 1s given by Kq. 14
* Ra. Denotes the SUR version of ordinary ridge parameter as:

1 (18)

max (¢ )

L smry =
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R

Designates the SUR version to the harmonic mean as:

Sharm®

. n n (19)
Ui (sharm) = 4 n1 . M ol 1
2. 2 2 2
i=1j=1 i=1j=10}
¢ R. ... ASUR extension tothe single equation arithmetic mean is:
1 1 (20)
L; Sarith) = 2 24 3
N i= 1=1 DLij
 Rg,.... Ageneralization tothe single equation geometric mean is:
! (21)
I-ij (Sgeom) M i . W
(LTI o
1i=11I=1
* R . The median of r;in Kq. 14 1sjused to define this parameter (Kibria, 2003) for a single

equation version as:

1

"

J

Rearisn: The arithmietic mean of JITJ , with r;; as defined in |

L (Skmed) _mEdlﬂﬂ{

(22)

.q. 14 1s used to define this parameter

as:
[ 1 1 (23)
Lij (qaritny = &ALl ==
NS
* Rg ... Based on the maximization of, with r;, as defined in Kq. 14 this parameter 1s:
1 (24)
Lij (sqmaxy — AR | —F=
oL
ij
« R.__ . A generalization to the single equation ridge parameter 1s:
1 (25)
I =max
1] (%t amx) &j
The last three ridge parameters are considered the proposed alternative

estimators presented in this study and all of the ridge estimators defined by .
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identical to Ry when &5 1s replaced by max (E;.:,j ). The estimators in Kq. 18-20 have already been
considered by Firinguetti (1997).

In order to assess the performance of multivariate ridge regression estimators defined in terms
of the above proposed multivariate ridge estimators, a Monte Carlo experiment can be used to

—

compare them in terms of TMSE with the GLS estimator, Eq. 6 and the general ridge regression

estimator defined by kq. 7 and 14.

The Monte Carlo experiment: In order to evaluate the performance of the alternative different

SUR ridge type estimators of the unknown vector parameter 3, the ThMSkiand the PR criteria were

considered to measure the goodness of an estimator of 3, say .

The total mean square error ( TMSE) 1s defined as:
TMSE(B) = Trace [E(B- B)(B“B)']

The PR criterion counts the proportion of replications, (out of 1000), for which the SUR version

of generalized least square estimator (5GLS) produces a smaller TMSE than the remaining
multivariate ridge estimators. In Table 1-4, these numbers are placed in parenthesis.The
performance of the different SUR ridge estimators, tinder consideration, are examined via Monte

Carlo simulations. The Monte Carlo experiment has been performed by generating data in

accordance with the following Equation:

2 26
Y, => %, B, +e,. t=12,..T;i=12...M (26)

=1

where, x.,=1. The explanatory variables are generated from MVN, (0O, 2 ) and multivariate T(6),
respectively. The random errors were generated from MVN_ (0O, X ), m =3, 10.

Algorithm: The simulation algorithm is based on the following steps:

* (Generate the explanatory variables from MVN, (O, X ) or T (6)
« Setinitial value of p eitherto(1,1,1,1, 1) or (1, 2, 3, 4, 5)f
« bimulate the vector random error e from MVN_ (0, 2), m=3, 10

« As outlined earlier, for a given X structure, transform the original model (2) to an orthogonal

form given by Kq. 8 and calculate the SGLS estimator along with § o (R), R = Rax, Repiey Ry
R Repom Ramear B R and R

error for the above cases, respectively

Then compute the corresponding total mean squared

garith Soarith! —~Egmax Srma”

« Repeat this process 1000 times and then calculate the average of the mean squared error and
the (PR) for each ridge parameter R, under consideration. Values of total mean squared error
and PR criterion are given in Table 1-4

Factors: In order to evaluate the performance of the proposed SUR ridge regression estimators o,

(R) and compare them with the SGLS estimator o, some factors are used for designing the
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Table 1: Estimated TMSEs and PRS for different methods, M = 3 equations (normal)

Ox SGLS SK SHK Sharm Sarith Sgeo Skamed Sqarith Sgmax Smax
T =30, px=0.35
0.75 25.31 53.15 54.22 50.18 33.29 03.82 41.73 33.09 37.87 33.49
(99.8) (99.8) (99.7) (79.5) (96.2) (97.1) (79.2) (91.6) (79.5)
0.90 49.89 05.4 08.32 86.95 37.81 55.13 60.05 39.29 45.88 37.39
(100.0) (100.00) (99.9) (33.0) (70.3) (77.6) (31.40) (49.2) (33.6)
0.97 145.00 261.42 271.18 228.71 40.63 88.76 100.55 39.47 50.79 40.07
(98.9) (99.2) (96.9) (2.6) (6.2) (17.5) (2.5) (3.1) (2.6)
0.99 416.54 737.08 766.95 634.85 41.44 143.92 182.27 40.30 49.45 41.53
(96.7) (08.4) (88.6) (0.0) (0.1) (3.3) (0.0) (0.0) (0.0)
T =100, ps=0.35
0.75 14.49 40.93 41.32 40.45 37.84 38.34 38.83 37.19 38.47 39.18
(99.9) (99.9) (99.9) (99.9) (99.9) (99.9) (99.9) (99.9) (99.9)
0.90 20.89 54.20 55.10 52.18 40.68 44,82 46.47 40.21 43.83 41.66
(100.0) (100.0) (100.0) (97.9) (99.9) (99.9) (98.0) (99.8) (98.0)
0.97 45.67 96.66 99.61 88.65 42.84 57.39 63.25 42.20 49.23 43.43
(100.0) (100.0) (100.0) (49.7) (83.6) (90.2) (48.6) (64.1) (50.9)
0.99 116.42 216.561 225.48 190.01 43:49 77.67 93.15 42.62 50.42 44 .25
(99.8) (99.9) (99.3) (5.2) (10.2) (27.6) (4.6) (5.3) (5.9)
T=30,p:=0.75
0.75 26.39 55.05 55.73 52.89 36.33 43.49 44.44 36.69 42.09 35.43
(99.8) (99.8) (99.8) (84.6) (97.9) (98.2) (85.9) (95.3) (82.4)
0.90 50.19 99.16 100.94 93.09 41.13 62.23 65.12 41.30 52.77 39.34
(99.8) (99.8) (99.6) (37.7) (81.6) (83.2) (38.0) (62.2) (34.8)
0.97 142.20 262.65 268.87 240.51 44.13 107.26 121.26 43.36 61.40 42.07
(99.0) (09.3) (98.1) (2.5) (21.8) (36.2) (2.4) (4.6) (2.8)
0.99 404.89 720.38 739.31 654.43 44 .55 188.39 244 .52 43.35 59.96 46.23
(96.7) (97.4) (93.2) (0.2) (0.8) (13.0) (0.2) (0.2) (0.2)
T =100, ps=0.75
0.75 16.45 43.62 43.82 43.31 40.57 41.75 42.17 40.46 41.80  4094.0
(100.0) (100.0) (100.0) (99.8) (99.9) (99.9) (99.8) (99.9) (99.9)
0.90 22.93 58.90 50.41 57.68 45.00 51.46 52.66 45.34 50.31 44.73
(99.8) (99.8) (99.8) (99.7) (99.8) (99.7) (99.1) (99.7) (99.7)
0.97 47.98 107.07 108.81 101.93 47.60 71.01 76.54 47.70 59.64 46.75
(100.0) (100.0) (100.0) (54.3) (95.5) (96.2) (54.6) (78.1) (52.1)
0.99 119.50 237.40 242,70 221.25 48.09 107.56 127.15 47.62 64.29 47.34
(99.7) (99.7) (99.5) (5.9) (37.7) (60.9) (5.7) (8.8) (6.1)

The PR values (in percentage) are placed in parenthesis below the values of the corresponding estimators

Monte Carlo experiment. Details of these factors and values over which these factors were allowed
to vary, are as follows.

Number of equations: It 1s important that the number of equation, M, to be estimated 1s of
central importance for the analysis of system-wise estimation. Therefore, as M increases, the
computation time becomes larger and larger. Thus, M =10 and 3 can be used to designate large and
small models, respectively.

Number of observations per equation: To investigate the effect of sample size, T, on the
properties of the suggested SUR-ridge parameters, T = 30 and 100, as the number of observations
per equation.
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Table 2: Estimated TMSEs and PRS for different methods, M = 10 equations (mormal)

Ox SGLS SK SHEK Sharm Sarith Sgeom Skamed — Sgarith Sgmax Smax
T =30,p:=0.35
0.75 132.56 290.16 295.09 271.28 135.44 198.44 200,72 135.91 171.70 131.48
(100.0) (100.0) (100.0) (52.6) (99.5) (99.8)  (53.2) (89.1) (49.5)
0.90 283.01 599, .89 012.44 551.99 142.29 311.63 341.25 141.99 206.04 139.20
(100.0) (100.0) (100.0) (0.8) (72.9) (85.3) (0.9) (11.9) (0.7)
0.97 865.72 185.65 1849.85 1681.28 160.57 252.78 T45.39 158.69 238.05 158.69
(100.0) (100.0) (99.8) (0.0) (4.9) (25.7) (0.0) (0.0) (0.0)
0.99 2520.78 5494.19 525.06 4954 .89 165.89 1197.87 1629.72 164.15 228.02 166.69
(99.9) (99.9) (99.7) (0.0) (0.0) (7.30 (0.0) (0.0) (0.0)
T =100, px=0.35
0.75 61.87 177.66 179.26 173.09 153.04 158.01 160.52 151.19 157.49 15.86
(100.0) (100.0) (100.0)  (100.0) (100.0) (100.0) © (100.0) (100.0)  (100.0)
0.90 04.24 253.57 2569.74 240.65 165.66 189.47 19757 163.87 179.39 169.09
(100.0) (100.0) (100.0) (99.4) (100.0) (100.0)  (99.2) (99.8) (99.4)
0.97 219.50 534.33 548.46 486.05 185.10 259.20 290.85 182.54 205.38 190.10
(100.0) (100.0) (100.0) (28.7) (85.6) (95.6) (26.9) (41.0) (31.8)
0.99 577.18 1272.14 1314.77 1125.88 190.09 5353.45 452.80 187.28 205.65 195.66
(100.0) (100.0) (99.9) (0.1) (0.3) (13.2) (0.1) (0.1) (0.1)
T=30,ps=0.75
0.75 131.62 309.43 312.04 20852 157.84 238.26 248.66 159.95 210.99 151.95
(100.0) (100.0) (100.0) (78.2) (100.0) (100.0) (80.3) (98.6) (71.1)
0.90 278.45 025.13 032,12 595.55 163.59 385.21 413.96 165.01 265.82 153.99
(99.9) (99.0) (99.9) (3.2) (96.9) (98.3) (3.1) (46 .5) (2.2)
0.97 847.05 1833.91 1857.96 1735.92 166.92 822.39 247.47 166.11 518.05 158.05
(100.0) (100.0) (100.0) (0.0) (40.7) (65.4) (0.0) (0.0) (0.0)
0.99 2470.87 5448.49 5521.45 515242 181.51 1772.08 2286.40 179.50 328.34 176.84
(99.8) (09.9) (99.7) (0.0) (7.2) (36.2) (0.0) (0.0) (0.0)
T =100, px=0.75
0.75 63.10 203.26 204.04 201.14 182.25 190.70 190.73 181.67 190.21 183.21
(100.0) (100.0) (100.0)  (100.0) (100.0) (100.0)  (100.0) (100.0)  (100.0)
0.90 95.16 282.82 284.86 275.71 192.62 232.66 240.09 192.60 22047 193.67
(100.0) (100.0) (100.0) (100.0) (100.0) (100.0y  (100.0) (100.0) (100.0)
0.97 219.25 530.41 537.34 505.79 178.56 313.12 345.29 178.64 232.41 178.81
(100.0) (100.0) (100.0) (24.6) (99.2) (99.7)  (23.9) (62.6) (24.5)
0.99 573.58 1296.63 1317.74 1223.63 202.61 532.80 625.17 201.15 261.26 2056.13
(100.0) (100.0) (100.0) (0.0) (30.3) (70.8) (0.0 (0.1) (0.0)
The PR values (in percentage) are placed in parenthesis below the values of the corresponding estimators
True value of the regression coefficient P: The true values of f = (1, 1,1, 1, 1) and

p=01,23 4,5

Distribution of X and collinearity among columns of X: Another factor that may affect the
performance of the suggested SUR-ridge parameters 1s the strength and type of dependency
among the explanatory variables. The explanatory variables were generated from a multivariate
normal distribution, MVN, (0,2 ) and multivariate T distribution, T (6), respectively. The variance-
covariance matrix 2_1s defined as diag (%) = 1. and off-diag (2 ) = fi,. The strength of collinearity

among these variables took on these values fi, = 0.75, 0.90, 0.97 and 0.99, (for medium, high and
very high).
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Ox SGLS SK SHE Sharm Sarith Sgeom Skamed Sgarith Sgmax Smax
T=30,ps =0.35
0.75 109.55 154.05 155.09 150.15 37.48 109.46 113.93 39.37 63.02 33.21
(97.0) (97.3) (96.2) (50.2) (74.4) (78.2) (51.2) (64.9) (48.5)
0.90 271.56 381.65 384.36 369.85 44.81 212.84 231.44 45.78 82.00 37.81
(98.0) (98.4) (95.5) (25.0) (57.4) (57.4) (24.4) (35.9) (23.5)
0.97 898.65 1414.34 1423.72 1370.78 59.61 540.78 493.29 54.50 117.68 42.49
(95.6) (97.5) (91.3) (3.8 (18.0) (23.4) (3.7) (6.1) (3.7)
0.99 2689.28 3764.09 3792.72 53629.72 59.59 1102.21 053.31 52.02 128.21 43.79
(92.7) (95.0) (83.2) (0.1) (4.9) (9.3) (0.1) (0.3) (0.2)
T =100, px = 0.35
0.75 86.72 131.73 132.07 130.94 36.53 122 22 124 .85 39.43 53.97 36.35
(99.1) (99.1) (99.1) (86.9) (96.0) (96.8) (87.3) (92.6) (86.1)
0.90 216.03 427.21 428.21 424.38 41.28 568.93 395.73 44.35 69.34 40.10
(99.4) (99.5) (99.4) (73.2) (89.7) (91.9) (74.3) (83.3) (72.6)
0.97 716.41 1707.49 1710.29 1696.38 45.88 272 57 1546.07 47.92 02.97 42.30
(98.4) (98.4) (07.8) (52.7) (57.4) (61.4) (32.6) (42.5) (32.9)
0.99 2145.16 5132.52 5140.85 5096.04 67.86 3655.04 4490.23 57.46 142.68 46.25
(97.5) (97.7) (93.0) (6.4) (17.9) (25.5) (6.1) (7.8) (7.0)
T=30,ps=0.70
0.75 113.75 19.57 191.20 188.09 41 .65 151.10 159.75 44.72 70.15 56.09
(98.0) (98.0) (97.8) (54.5) (83.2) (83.9) (56.0) (72.3) (50.5)
0.90 282.16 463 .45 465.09 456.15 54.75 559.34 3562.565 56.42 105.45 41.42
(97.9) (98.0) (97.5) (28.4) (66.2) (66.3) (27.5) (45.7) (25.1)
0.97 933.75 1310.35 1316.00 1282.48 72.29 820.48 818.11 65.88 167.84 45.93
(96.3) (97.0) (94.1) (5.7) (30.7) (37.3) (5.4) (10.8) (4.8)
0.99 2794.25 4213.37 4239.65 4130.65 79.20 2322.33 2013.20 63.18 180.30 47.53
(94.8) (95.3) (90.0) (0.4) (11.6) (15.8) (0.3) (0.6) (0.4)
T =100, px=0.75
0.75 83.71 184 .50 184.68 184.03 42.51 176.62 179.49 49.25 74.18 39.4
(99.6) (99.6) (99.6) (87.6) (97.8) (98.3) (89.7) (94.8) (86.8)
0.90 201.78 310.27 310.74 308.61 50.00 279.15 284.76 57.98 99.81 44.00
(99.4) (99.4) (99.4) (75.3) (95.2) (95.4) (77.7) (89.0) (72.2)
0.97 658.05 1103.05 1104.67 1096.71 59.91 058.27 083.56 67.97 170.21 46.92
(98.2) (98.3) (97.9) (35.8) (74.3) (73.7) (35.6) (53.0) (532.2)
0.99 1960.66 2908.51 3003.42 2078.52 119.26 248517 2500.74 093.64  296.72 57.14
(96.8) (97.3) (95.3) (5.6) (37.5) (41.6) (5.1) (12.8) (5.4)

The PR values (in percentage) are placed in parenthesis below the values of the corresponding estimators

Distribution of random errors and correlation among equations: The random errors were

generate from a multivariate normal distribution MVIN_ (O, 2 ), where m = 3 or 10 equations. The

variance-covariance matrix 2_is defined as diag 4 =1 and off-diag (%) = p;. Two different degrees

of interdependency among these equations were considered. These values are p, = 0.35 and 0.75,

for low and high interdependency, respectively.

For each model, 1000 replications using the statistical software S-plus version 6 were performed

(Mardikyan and Darcan, 2006). Table 1-4, present the estimated TMSKs and PRs for different

methods (SGLS estimator along with &y, (R), R = Ray, Rege, R

and R

BEmax

multivariate T distribution, T (8), respectively.
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Table 4: Estimated TMSEs and PRs for different methods, M =10 equations T (6)

oX SGLS SK SHEK Sharm Sarith Sgeom Skamed Sqgarith Sgmax Smax
T =30,pL=0.35
0.75 745.87 1386.51 1391.17 1367.7 172.41 1105.46 1130.3 174.94 509.93 129.15
(96.9) (97.1) (96.5) (5.9) (75.7) (81.7) (5.7) (38.2) (4.0)
0.9 1937.55 3178.82 3190.73 5123.1 216.07 23466 242095 202.28 T45.35 140.54
(97.8) (97.9) (7.1) (0.0) (49.3) (59.0) (0.0) (5) (0.0)
0.97 6552.52 12730.1 12771.2 12519.8 263.49  8311.1 84540.64 211.89 1172.73 153.53
(99.0) (99.0) (98.6) (0.0) (20.9) (31.1) (0.0) (0.0) (0.0)
0.99 19731.40 36585.7 36710.3 55920.1 283.16 20760.5 21546.8 200.22 1305.83 163.74
(99.0) (99.2) (98.8) (0.0) (10.9) (17.2) (0.0) (0.0) (0.0)
T =100, pX = 0.35
0.75 208.25 402.09  403.57 397.27 156.42 335.52 348.73 162.67 257.03 154 .64
(99.5) (99.5 (99.5 (76.2 (96.1 (97 .4 (77.1 (90.2 (75.5
0.9 485.51 839.78  843.68 824.91 171.81 627.59 661.03 180.98 563.6 163.95
(98.7) (98.8) (98.3) (38.7) (84.7) (87.8) (39.2) (64.9) (39.4)
0.97 1557.64 2795 2808.74 2737.93 197.32 . 1680.67 1805.3 202 539.55 117.34
(99.2) (99.2) (99.1) (1.4) (33.6) (44.6) (1.4) (5.5) (1.7)
0.99 4618.70 807739 8119.6 7892.4 212.02 . 4161 4441 .68 210.02 656.81 186.25
(99.4) (99.4) (99.2) (0.0) (6.2) (13.2) (0.0) (0.0) (0.0)
T=30,pZ=0.75
0.75 1096.77 1743.12 1745.51 1732.38  263.56  1588.9 1616.7 281.09 946.39 153.9
(97.7) (97.7) (97.3) (14.2) (91.6) (93.3) (14.2) (64.8) (7.8)
0.9 2029.46 4459.1 4465.57 4428.75  373.62  3859.91 3941.18 341.73 1627.85 167.97
(98.3) (98.9) (98.1) (0.9) (76.3) (82.0) (0.6) (18.5) (0.5)
0.97 10036.80 17990.4 18012.8 17873.4  1039.92 14615 15041 530 3424.89 252.64
(98.8) (98.8) (98.6) (0.0) (48.1) (58.1) (0.0) (0.2) (0.0)
0.99 30336.50 48478.5 48546.7 48128.8 163543 36591.7 37558 .4 782.96 5506.74 284.75
(98.9) (98.9) (98.2) (0.0) (27.9) (41.7) (0.0) (0.0) (0.0)
T =100, pX=0.75
0.75 215.34 415.685  416.28 413.39 189.18 380.11 387.47 207.24 322.81 176.27
(99.4) (99.4) (99.4) (83.1) (98.8) (98.9) (85.0) (96.5) (80.5)
0.9 502.92 0962.91 964.69 05597 213.38 823.44 844.39 237.28 549.28 186.42
(99.5) (99.5) (99.4) (50.3) (96.1) (96.5) (51.9) (82.8) (47.5)
0.97 1615.10 2004.24 3000.65 2066.356  235.89  2243.27 2328.69 251.75 915.76 186.74
(99.1) (99.1) (99.1) (1.8) (72.1) (76.1) (1.8) (18.3) (1.7)
0.99 4790.60 8416.67 8436.51 833057 27545  5580.19 571.38 258.04 1304.36 194 .48
(99.5 (99.5 (99.5 (0.0) (29.9) (41.7) (0.0) (0.1) (0.0)

The PR values (in percentage) are placed i parenthesis below the values of the corresponding estimators

RESULTS AND DISCUSSION

This section 1s devoted to explain the output from the Monte Carlo experiment along with the
main dominating factors effecting the properties of the different multivariate ridge parameters.
These different estimators are:

« o (SGLS), using Eq. 10 (Zellner, 1962)

¢«  a(Ra), a(Rayp) and o (Rg,...) using Eq. 10,18 and 19 (Brown and Zidek, 1980; Srivastava
and Giles,1987; Firinguetti, 1997)

o  a(Ry.,), o, )and o« (R, ) using Eq. 20 and 22 (Kibria, 2003; Alkhamisi et al., 2006).

¢ The proposed estimators: « (Rg,..), o« (R yand o (R....) using Eq. 23-25

SEeolm

Sqmex SIMEX
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The results of Table 1 pointed out that, a slight increase in the TMBSE values for o (R.,...),
¢ (Rymm and o (R

estimators have shown to have the best performance in terms of TMSE and PR criterion when

), as the sample size i1ncreases. These multivariate ridge regression

BEmax

compared with the remaining proposed multivariate ridge regression estimators. Moreover,

multivariate ridge regression estimators based on Ry, Rayye and R have produced the highest

Sharm

TMSE and the worst PR values among other estimators. In large samples, when the correlation
among the explanatory variables (p,) is low, the unbiased estimator « , SGLS of &, has occasionally

shown to have the smallest TMSEKE among the remaining estimators, especially, when T =100. In
addition, when T = 30, 100, p, =0.35 and p;, =0.97, 0.99, the « (R

1n terms of TMSE and PR criterion compared to the remaining proposed multivariate ridge

sqeritn); AavVe the best performance

regression estimators. While, the o (R, _..) have the best performancein terms of TMSE and PR

Smax

L]

criterion compared to the remaining proposed multivariate ridge regression estimators, for

T =30,when p;, =0.90, p;, = 0.35 and for = 30, when p; =0.90,0.97,0.99, p,, = 0.75.
From the results of Table 2, the unbiased estimator @ , SGLS of &, has the smallest TMSE
among the remaining estimators, when T = 100, p, = 0.7 and p,; =0.75, 0.90. In addition, the

e

« (Rq, ) have the best performance in terms of TMSE and PR criterion compared to the remaining

proposed multivariate ridge regression estimators, for T = 30, when p, = 0.75, 0.90, p; =0.35 and
for T= 30, when p,; = 0.90, 0.97, 0.99, p, = 0.75 whiech, nearly the same result obtained from

Table 1 when the number of equations (M = 3).
The results of Table 3 and 4 pointed out that the o (R, ., ) have the best performance in terms

of TMSE and PR criterion compared to the remaining proposed multivariate ridge regression
estimators for all values of T, p, and p;.

To conclude, the results of Table 1 and 4, in all cases, pointed out that, the performance of the
multivariate ridge parameters, based on terms of all factors (the number of equations (M), number
of observations (1), correlation among the explanatory wvariable (p;) and correlation among
equations (p;) can be summarized as:

« As Mincreaseés, the TMSE

1
+ As T increases, the TMGSE decreases and PR increases

nereases and PR inereases

« As pyincreases, the TMSK increases and PR increases

0
* As p;increases, the TMbBE increases and PR increases

It 1s also noticed that the TMSEs of almost all of the different parameters have enormously
1ncreased when the dimension of the system of equations = 10, especially, the SUR regression

which have produced the highest TNMSE and the worst
proportion of replications, (PR), among the others.

estimators based on the Ry, Reyr and R

Sharm

SUMMARY AND CONCLUSION

This study presented a number of alternative procedures to develop some alternative
multivariate biased estimators applicable to systems of regression equations. All i1n all, 10

multivariate parameters are studied and compared. This investigation used the TMSE and the PR
criterion to measure the goodness of SUR ridge type estimators. The simulation results support the
hypothesis that the number of equations, the number of observations per equation, the correlation
among explanatory variables and equations are the main factors that affect the properties of SUR
ridge estimators. It 1s noticed that the unbiased estimators, SGLS, has occasionally (in large sample
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—

and low correlation among explanatory wvariables) shown to have the smallest TMSE when

compared with the others. However, for high correlation fi,,, SUR ridge estimators based on R
Reqarisn @and Ry perform better than the remaining estimators, in particular « (R
from Table 3 and 4 that the estimators « (R

combination of factors discussed earlier. Clearly, SUR ridge estimators based on Ry, Rer and R

garith’

). It 15 evadent

) performs quite well under all conditions or

Smax
Smax

Sharm

perform very poorly when compared to the other estimators.

In conclusion, under certain conditions, the « (R.__ ) estimator is recommended as one of the

Srmax

cood estimators to estimate the multivariate ridge parameter R. however, this requires further
considerations such as generating random errors from some non-normal distribution.
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