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ABSTRACT

The study aimed at studying the effect of irregularity present in the surface layer on the
propagation of Love waves. The irregularity is present in form of an infinite rigid strip in the
surface. The rigid strip lies along half of the slightly dissipative and homogeneous surface layer
while other half of the layer is free surface. The transmitted, reflected and the scattered waves have
been obtained by Wiener-Hopf technique and Fourier transform. Numerical computations have
been done and conclusions have been drawn on the basis of analysis of results. The scattered waves
behave as decaying cylindrical waves originating at the tip of rigid strip and its image in the
interface. The scattered wave decreases rapidly as the distance from the strip increases. The
transmitted and scattered waves move with a velocity equal to that of shear waves, if whole of the
layer is rigid.
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INTRODUCTION

Love waves are transversally propagated surface waves which we feel directly during
earthquake. The study of propagation of Love waves through crustal layer of earth gives us the
idea about the internal structure of earth. In the present study we propose to discuss the effect of
presence of an infinite rigid strip in the layer. A surface layer -H<z<0 1s superimposed on a solid
half space z=0. The irregularity is in the form of an infinite rigid strip -H<z<-h, x<01in the surface
layer and the other half of the layer is free surface,

This study finds its base on a paper by Sato (1961) who studied the problem of reflection and
transmission of Love waves at a vertical discontinuity in a surface layer. Jardaneh {2004) has
considered the expected source of earthquake evaluating the ground source response spectra taking
into account local seil properties to evaluate seismic forces. Kaur et al. (2005) have studied the
reflection and refraction of SH-waves at a corrugated interface between two laterally and vertically
heterogeneous viscoelastic solid half-space. Dhaimat and Dhaisat (2006) have studied the sharp
cut decrease of Dead Sea. The propagation of wave in inhomogeneous thin film has been discussed
by Ugwu et al. (2007) using the series expansion scolution method of Green's function. Tomar and
Kaur (2007) have studied the problem of reflection and transmssion of a plane SH-wave at a
corrugated interface between a dry sandy half space and an anisotropic elastic half space. They
used the Rayleigh (1878) method of approximation for studying the effect of sandiness, the
anisotropy, the frequency and the angle of incidence on the reflection and transmission ceefficients.
Ademeso (2009) has discussed the deformation traits in Charnockite rocks by analyzing the
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direction of maximum compressional and tensional stresses inferred from the rose diagram.
Chattopadhyay et al. (2009) has studied the reflection of shear waves in viscoelastic medium at,
parabolic irregularity. The authors found that the amplitude of reflected wave decreases with
increasing length of notch and increases with increasing depth of irregularity. The finite element
method analysis has been used by Adedeji and Ige (2011) to investigate and compare the
performance of a reinforce concrete bare frame infilled with or without straw bale wall shape
memory alloy diagonal wires subjected to seismic loads and earthquake ground excitation. Ramli
and Dawood (2011) have studied the effect of steel fibers on the engineering performance of
conerete. A computational technique has been applied to study the field propagation through an
inhomogeneous thin film using Lippmhhann-Schwinger equation by Ugwu (2011). The
propagation of seismic waves has also been studied by Zaman (2001), Zhang and Chan (2003),
Balideh et al. (2009), Saito (2010) and Aziz et al. (2011). Here, we discuss the propagation of Love
waves through irregularity in form of an infinite rigid strip present in the surface layer.

THE PROBLEM AND ITS SOLUTION

The scattering of incident Love waves due to infinite rigid strip in the surface layer has been
discussed in the present study. The problem is being analyzed in zx-plane. The z-axis has been
taken vertically downwards and x-axis along the interface. The geometry of the problem is given
in Fig. 1. The incident Love wave is given by:

vy, = A cos 0y He ®rn® 550 (1
Vo, =A 0080,z + Me™ * —H<z<0, (2
Where,

B, :Vk§7k3N=e1N :’\'ka 7k12’ ‘kl‘<|k2" (3)

0, -H) Free surface

0,0 );

Vi

Fig. 1: Geometry of the problem
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and ky; is a root of equation:

6 I 4
tan 0, H=vy M =21, (4)
" eEN y‘]

i, and y, being the rigidities of shear waves in the half space and in the crustal layer, respectively.
The wave Equation in two dimensions is given as:

u ¢'u 1 3'u e ou (5)
+ =— + ,
ot 9zt & ott ot

where, e>0 is the damping constant and ¢ is the velecity of propagation. If the displacement be
harmonic in time, then:

ulx, Zt)=vix, z)e ™ (B)
and above equation reduces to:
2 2
9 \;+a—f+k2v:0. (7
ox* oz

The above wave equation in the present study can be written as.

(V 4Ky, =0, j=12,3 (8)
Where,
—
k= [T ik (©)
VJ 1 1

V, and V, are, respectively the velocities of shear waves in the half space z:0 and in the layer
-H<z<0,
The total displacement is given by:

v =vy v, 220, ~cox oo, (1
= VTV, -hz£0, —eosix<oo, (11
= vy v, -Heze-h, x20. (12
The boundary conditions are:
(1) Vo tv, =0, z=-h, x<0, (13)
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(ii) 05 g x20, z=-H, (14)
dz

{1i1) vy tv; =0, -Hez<-h, x =0, (15)

(iv) v oy _ v, z=-h, x=0, (16)

=v =3
3= V3
0z 9z’

) Vi =V, “"lal:“ﬁ%:-zzoa -0 X < oo, (17)
dz 0z

From Eq. 12, 13 and 15, we get.

v, =-Acos B, z+H)e KX ;o _p x<o, (18)
V= -Acos B, (z+H)e K ¥ _Heg< h x-0. (19)

Taking Fourier transform of Eq. 8, we obtain:
%7 0%V, (p.2) =0, (20)

where, B =t [p? —K and ¥ (p, z) represents Fourier transform of v, (x, z) which can be defined as:

v,ip, z) = IVJ (%, z) ™ dx, p=a +if,

p r (2D
= I v, (%, 7) e dX+IVJ (x, z) ™ dx
0

=V, (p.2)+V, (b, 2).

Iffor agivenz, as [x|—=and M, t>0, |v,(x,2) | ~Me ™, then ¥, (p.z) is analyticin f>-Tand v_ (p, )
is analyticin <t (=Im (k))). So by analytic continuation v, (p, z) and its derivatives are analytic in
the strip -t<pf<t in the complex p-plane. Solving Kq. 20 and choosing the sign of 0, such that its

real part 1s always positive, we obtain:

v.(p,2) =A (p) &%, 220, (22)

vV, (0,2 =B (P e +C(p)e¥, —H<z<0, (23)
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Solving Kq. 22 and 23 by using boundary condition (Kq. 17), we get.:

2= Ap) [6,cosh B, z(; v6, sinh 0, z]. (24)

v, (p,

2

Differentiating Kq. 24 with respect to z, putting z = -h, denoting v (p,-h) by v, (p) etc. and then
eliminating A (p), we obtain:

= . = __ 0,coshO, h+90, sinh6; h - a5
V) =7 )+, )] =g e e [ ) T (25)

Taking Fourier transformation of Eq. 16, we get.
V.0 = V.. (p) and 5 (1)~ V., (0). (26)

Now, multiplying Eq. 8 by e and integrating from O to = (j = 3), we find:

2

. 0,218 5, . z)=[%} ~iDY,),.o @7

=z=0

Changing p to -p in Eq. 27 and subtracting the resulting equation from Eq. 27, we get:

(fz_z [v,, (p,2) — v, (-p, 2)] -0 [V, (p, 2) —¥,, (-, )] = 2ip Acos O, (z+H). (28)

The solution of Kq. 28 is written as:

% (2=, (p.2)=D, () € 4D, (p) - H0A €02 oy 21D, (29)
1N
Using boundary condition (14) in Eq. 29, we find:
¥, (p. )~ %, (=p, 2) = D (p) cosh 8, (z+ H)— DA oo 91?;(2 +H) (30)
P —Em

Differentiating Kq. 30 with respect to z, putting z = -h in resulting equation and in KEq. 30 and
then eliminating D (p) from both equations, we get:

coth®, d %2 (5) -9, (-p) 2ipA0,, sin 6, 8| 2ZipAces 0, 8 (31)

8, p’ _klzN p’ _k12N

Vi, @) -V, (-p) =

where, 6 = H-h, 1s the width of the rigid strip. From Eq. 25 and 26, we write:
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coth6,d

- V. (0) -7, (-p)— 2ipA By, sin 0,,8 | 2ipAcos Oy 6. (32)

2 p2 B k12N p2 B ka

v, (P)-V, -p=

Using Eq. 25 in Eq. 22, we get:

fi PV, () +iACOS By 3 _ f v, () _ coth O, SV

F(psinh6,5" prky,  *PTF pysmmhe, 5 8, P
B cotge2 o 7, P+ 2ipA (E)QEN sir21 0,, (33)
) P -k
where,
£ (p) =B, sinh 6, F+y6, cosh 6,H, (34)
£, (p) = 0, sinh 0, Ir-y0, cosh 6,1 (35)

Equation 33 is the Wiener-Hopf type differential equation (Noble, 1958) whose solution will
give vy,(p).

Solution of the Wiener-Hopf equation: For solution of Eq. 33, we factorize:

8,8 1f(p)
sinh 8, 8 |T, (p)

as given in Appendix 1, as:

0,8 £ _ a6
(Smhez 6] F iy KO (36)

where,
K, (P)=K (-p)= L. (m ﬁ (P+py,) (37)

H,(p)aa (P+Py)

p =#p,, and p =#p, are the zeros of f; (p) and f, (p), respectively.
We now decompose:

coth 8, &
6, &

as:

coth 6, 8

_ 38
55 F.(p)+F (p) (38)
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where,

o | . 1 39
E)=E(p) 2k26(p+k2)+§ p, 8(p+ip,) w

Now using Kq. 36 and 39 in Eq. 33, we find:

K@)V, (p) | iAcos0y, 8] K K, (k) |, 1AcosOyy 8k, —ky
Syp+k,  B-kp) [k, Wk tky (p+k, K (k)
L GABy sin 6, SF_(~ky Wk, Ky, | A, sin 6, 62 J—k, —ip,

(kK k) ’ = P8 (p+ip) K (ip,) Gp, —kyy)

iAB,, sin B, 82k, o'k, iA 8, sin 8, 8} 1

+ - [V, (k) 49, (k) —
2k, 3 (p+k,) K (k) (k,~k,) 2k, 8(p+k,) k,+k,, K _(-k;)

_iAB,, sin 0, 5{ 1 < i }sz ~kyy

prky |2k, 80k, k) Zp, 8 (ky+ip,) | K_(ky)
Y e {v3_<ipn>+va+(ipn) 1A O SN Oy 8} L
n=1 pna(p+lpn) lpn+k1N K,(_lpn)

=0.(p) (40)

In Eq. 40, O_(p) include the terms which are analytic in p<t and left hand member of above
equation 1s analytic in the region p>-t. Therefore, by analytic continuation each member tends to
zero in its region of analyticity as |p|—>«. Hence by Liouville's theorem, the entire function is
identically zero. So equating to zero the left hand side of Eq. 40, we find:

iAcos 0, K, (km),fp +k, . AB, sin Oy, 8 Wk, +ky

V.. (p)= Safp+k;, A,
» (@ p-kyo) \/kz +hy (p+k,) K, k) P
+ ic, : ! +,/p+ k, i “1?2 ip, — B, L , (41)
Jpky 2k, K, (k) = (p+ip)K, Gp,) © K. (P)

where,

cotB,, o 1 < 2
A= N + 2 (42)
6y S(I-K) 2307 +EL)
B, = v, (ip,)+ Vi (ip,) - PO 510 O 8 (43)
P, — ki
c,=v, sz)*%(kz)*%W- (44)
kz - klN

The displacement v, (x, z) is obtained by inversion of Fourier transform given as:
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e=tHip

eS| V62 e dp

—e=tiff

17 -1 {Blcosh 6, z—vB, sinh B, z

2n ). 0, |6, sinh®, h+v0 cosh 0, h

— ﬁg@ﬂw@ﬂwﬂm (45)

—coHiff

where, v _(p) 1s givenin Eq. 411.

RESULTS AND DISCUSSION

The incident Love waves are scattered when these waves encounter with surface irregularities
like rigid strip in the erustal layer of earth. For finding the scattered component of the incident Love
waves, we evaluate the integral in Eq. 45. There is a branch point p = -k, in the lower half plane.
The contour of integration has been shown in Fig. 2. For contribution around this point we put
p = -k,-it, t being small. The branch cut is obtained by taking Re (0,) = 0. Now 0.,% = p%k,? should
be negative, so 8, =48, . The imaginary part of 0, has different signs on two sides of the branch cut.
Now integrating Kq. 45 along two sides of branch cut, we get.:

vy (%, 2) :2i_rc ]T{Vz (p, z)}e] . v, (v, Z)}BQHEJ o o gt

= {&(t) + "‘T(t)} 8 (sin 8, (z+h)-sin B, (z— )
28,8, cos B, (z—h)+ 8} (sin B, (z+h)+sin B, (z—h)) ]| e™* & dt, (46)

where, ¥ (t) and £ {t) are given by:

llﬂl(v)

£ :-Kl -K’ .\\ »—

Fig. 2: Contour of integration in complex p-plane
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:_z sin@, 8 K, (k,+it) C, 47
v 2n[ 6,3 JKJkg)n(t)JE’ o

&(t)—éi 6(5in§2 8] Ak, tkyABysin 0,8 HAK, (k) cos 0y &
2n L 6,8 (kypy —ky —1K, k) 6\/142 +loy (kyy +k; +1)

R B, &, +ip, }K (k, +it) (48)

aipy O Gp, Kk, ~i) K, Gp,) | (D

and
N ()= (6, cos 8, h+v0,sin 6, h)(~0, sin &, H +v8, cos 8,H)J—2K, — 1. (49)

For evaluation of integral in Kq. 46, Laplace transforms (Oberhettinger and Badii, 1973) as
given in Appendix 2 are used. Since t’ 1s small, so we retain £ () and ¥ (0} only. Also for:

2

z
x>z, Wk + 7 :x+2—
X

and Eq. 46 is written as:

(2x)°

_ _ 2 " "I 1.2 . "2 1.2 . .
2y (x—k, (z-h) )y,/zk2 N i, 1O KD JE{(Z+h) e 4z h) e_akz}}
2x7?

QXA
" " "7 _ 1.2 .
. (0){2142 ?;/E f(oh) e oot o] 27 2K, :r/r;,/k2 K
X

+Ym (k"fkf){Erf{‘/EJ(ziJrh)}rErf{‘/g(Z_h)ui, (50)
X

V2x

where, Frf (x) 1s the error integral and He, (x) 1s the Hermite polynomial of order 3, given as:

Eif (x) =2+/r ](‘e“’2 du, (51)

and

He,{x) = - 3x(3/2) i m-1) x™ o
3 r(_l) m:Dr(m+3/2) 2"ml!

=X +(z+h), 1, =%+ (z—h) (53)
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For large %, we can write:

v, ~ o[%} e o{%} o (54)
1 2

Equation 54 represent the scattered waves at large distance having the amplitude of eylindrical
waves originating at the point (0,-h), the tip of the strip and at the point (0, h), the image of tip in
the interface.

The incident Love waves are not only scattered but they are reflected also by the surface
irregularity. For finding the reflected component, we evaluate the integral in Eq. 45 in lower half
plane when x>0. There is a pole at p = -k;; and the corresponding wave is given as:

_ Acos By, 8K, (k) . C, 1 < i4Jk, +ip,
2k \/kz +ky (k,— k) \}Zkz K. k) foip, (p, — Ky K Gp,) "

o (sin 6, 8)° o cos Oy, (z+H) K, (ky) gk, —ky ol
dcos B, H cos 6, S{diﬂ (p)}
P

vy, (%, 7)=

(55)

p=-kiy

These are the reflected Love waves in the region -h<z<0, x>0. Now, we find the reflected
component of the waves in the region -H<z<-h, x>0. The displacement. in this region is given as:

coHifs

v [ heneT .
—o=Hf
1 =Hp = = —ipx
e [T @D Cr0)] e

Putting z = -h in Eq. 30, we write:

2ipAcos 0y, B (B7)

%0 %, (D)=D (peosh 0, 5 =B

Eliminating D (p) from Eq. 30 and 55, we find:

2ipA cos 8,,; & |cosh 8,(z+H)
-k, cosh B, &

V.0, 2)-V.(p, )= |V, (p) -V, P+
_ ZipAcos By, (z+H) (58)

P2 - klzN

Now using Eq. 26 (54) and 56, we obtain:

1 catify

Vi) = | Hv (®)-v, (P

2ipA cos O,y 5} cosh 6, (z+ H)

p’ -k, cosh 6, &

—eatify

2ipA cozs 92th (z+ H)}mX dp, (59)
P -k
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where, v.(p) is given by Eg. 41 and v.(p) is obtained by replacing p by -p in Eq. 41. There is a
simple pole at p = -k,;; and the residue at this point contributes to the reflected wave in the region
-H<z<-h, x20 which is given by:

~ Acos 8, 8K (k) N C, 13 ik, +ip, B
ZklN\/kz +ky (ky—kyy) \JZkz K, k) Zipalp, -k K, Gp,) "

: 2 {
cos 0, (z+ ) K, (k k,-k .
><(Sll‘l ezN 5) w IN ( ) + ( 1N) 2 1N e1k1HX — A cos em (Z+ H) elka_
dcos B, H d
cos &y, 8| —f, (@)
dp

v, (X, 2)=

(60)

= —kpy

Equation 80 represents the wave reflected in the region -H<z<-h, x20, in presence of the rigid
strip. The first term in the equation is same as in Eq. 55 and this represents the wave reflected from
the free surface (z = -H, x=0) of the layer and the second term represents the wave reflected by the
rigid strip (-H<z<-h, x = 0). We now evaluate the integral in Eq. 45 in upper half plane if x<0,
There is a pole at p =k;; which contributes to:

vy =—Acos B,y (z+H) g e (61)

which cancels the incident wave when x<0. Now, for finding the transmitted Love waves of m™
mode, let p =k, be the roots of the Equation:

f; (p) =0, cosh 0, h+v0, sinh 6, h=0. (62)

The residue at the poles p =k, contributes to:

ic, 1 i i, +ip,

+ + _ B,
8 (k; +ky,,) 2k, K, (k) £51p, 8 (kg +ip,) K, Gp,)

) ) sin((z+ )ik kgm)

cos(h,fkg ey )H}f} (p)}

g T (69)

Pl

These are the transmitted Love waves of m™ mode in the surface layer of thickness h which are
absent on the line z = -h.

CONCLUSIONS

The scattered waves decrease as the distance increases and they behave as decaying cylindrical
waves at the distant points. So, as the distance from the strip increases, the component of the
scattered wave decreases which specifies that at large distance from the strip, the destructive effect
of these waves 1s comparatively low. If whole of the surface layer i1s rigid, the scattered waves
behave as cylindrical waves and the transmitted waves propagate with a velocity equal to that of
the shear waves in the solid layer. The transmitted waves decrease exponentially as the distance
from the strip increases. It is also clear that as the width of strip decreases, the transmitted
component of the waves give larger value.
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APPENDIX
Appendix 1: Decomposition of:

ez 3 f1 (p) _
mfz o K, (p) K (p).

According to infinite product theorem, we can write:

inh 6,8 = 1@ 1
Sle 82 :l__[(pn §,+p" 8)=H (p)=H,(p) H (p), (A1)

Where:
pl & =1-k) &, 8 =5/nx. (AZ)

Now if p =#p,, and p = #p,, are zeros of f, (p) and £, (p), respectively, we can write:

£, (p) :ﬁ (pj —p}) G, () (A3)
£ @ i -1 G, @)
Where:
e s ey
and
G, ()= P (A4)

[T -0

and G, (p) and G, (p) have no zeros. Also we can write:

L (p)- g—g L) L), (AB)
Where:
log L, (p) = % % dt f% j% at, (AB)
and
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vt +k " cos H (1 + KD
(" +k) 7 sinH (t* + k)" 7

tan ¢, =

v (k¥ — 3 cos H (k? —t7 )12 _
(k2 -t sinH (k2 )"

tang =

tan ¢, and tan ¢, are obtained from (A7) and (A8) by replacing H by h.
Now, from (A1), (A3) and (AB), we write:

0,5 [ L(p)L(p)H @' =Pi) g () K_(p),

sinh@, 3f, (p)  H(p) H_(P) »ot (P*—1P3,)

and

K @)=k (=@ Il ®+p,)

H, (@) 5o (0+py,)

and |k, (p)[—[p["?, as |p| e,

Appendix 2: Laplace transforms used are:

T . _ Jnt

Ism 2k tz) e ™ dt =—-e Uarlt2)
X

0

J\E cos 1/21( tzye™ dt= r w (x—k;z") )

2% T LT

(2x)° Jx

It sin (\/21{ tz)e™ dt= "l_ {\/EZJ o (kari2x) ,

™

J-sm (J2k,tz) dtﬂtErf{ 1;2 }
X

QI

T COs (V‘zk tZ) —tx dt —(k212f2x)
J_

1]
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