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ABSTRACT

The Chebyshev polynomial approximation of an entire sclution of Generalized Axially
Symmetric Helmholtz Equation (GASHE) in Banach spaces Bip,q,m) space, Hardy space and
Bergman space) have been studied. Seme bounds on generalized order of GASHE functions of slow
growth have been obtained in terms of the Bessel-Gegenbauer coefficients and approximation
errors using function theoretic methods.

Key words: Chebyshev approximation error, generalized order, Helmholtz equation and entire
function

INTRODUCTION
The partial differential equation:

2'n &l v du

—t—=t 5+K2u=0,v>0 (1)
¥

o’ oy

is called the Generalized Axially Symmetric Helmholtz Equation (GASHE) and the solutions of
Eq. 1 are called GASHE functions. A GASHE function u, regular about the origin, has the
following Bessel-Gegenbauer series expansion:

w a, n!
n T Cl{cosB (2)
a0 (2‘, + ]'l) v+n n(COS )

u(x, y)=u(r,0)=T(2v)(kr) ">

where, x = rcos, v = rsinf, J,,, are Bessel function of first kind and C*, are Gegenbauer
polynomials. A GASHE function u is said to be entire if the series (2) converges absolutely and
uniformly on the compact subsets of the whole (x,y)-places it is known (Gilbert, 1969) for an entire

GASHE function u that:

; la, | Lin _ (3)
hllsfp(l“(n+ v+1)) 0

The growth of entire function f(z) is measured by order p and type T defined as under:
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limsupilogmgM(r’ D =p (4)
fse logr
li.msupl%Mip(nﬂ:T(0< p<o) (5)
n—ym T

where:

M(r. 1) = max| £z}

be the maximum modules.

In function theory, the growth parameters may be completed from the Taylor's coefficients or
Chebyshev polynomial approximations. Function theoretic methods extended these properties to
harmonic funetions in several variables (Gilbert and Colton, 1963; Gilbert, 1969; McCoy, 1979).
(McCay, 1992) studied the rapid growth of entire function solution of Helmholtz equation in terms
of arder p and type T using the concept of index. He obtained some bounded on the order and type
of entire function solution of Helmholtz equation that reflect their antecedents in the theory of
analytic functions of a single complex variable. Recently, (Kumar and Arora, 2010) studied some
results generalized axisymmetric potentials. In this paper we have studied the slow growth of entire
GASHE funection u by using the concept of generalized order (Kapoor and Nautiyal, 1981) in
Banach spaces (B(p,q,m)) spaces, Hardy space and Bergman space).

Seremeta (1970) defined the generalized order and generalized type with the help of general
funetions as follows.

Let L* denote the class of functions h satisfying the following conditions:

(1) h(x)is defined on [a,) and is positive, strictly increasing differentiable and tends to « as x—>

(i) gy MO LOOE0]
T h(x)

for every function ¢(x) such that ¢p{x)a as x—e,
Let A denote the class of functions h satisfyving condition (1) and:

h{cx) 1

(1) i
h(x)

for every c>0 that 1s, h(x) 1s slowly increasing.
For entire function f(z) and functions ai(x)eA, f(x)el.*, (Seremeta, 1970), proved that.

a[logM(r, ] _ a(n)

p(o, B, £) = limsup limsup——————. 6
fn—pon B(logr) n—en ﬁ(fllog ‘ an |) ( )
n
Further, for a(x) eL.?, ' (x)e L, v (x) eL":
T((I,, [_)), f) = ]jmsu M — IHHS'I.IP (I,(]lf p) (7)

e Bl{Y(0)°] v PULY(E |2, [P TY
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where, 0<p<e 15 a fixed number.

It has been noticed that above relations were obtained under certain conditions which do not
hold if & = B. To define this scale, (Kapoor and Nautiyal, 1981) defined generalized order p(e,f) of
slow growth with the help of general functions as follows.

Let, Q be the class of functions h(x) satisfying (i) and (iv) there exists a 8(x) € Q and x,, K, and
K, such that:

iv) o« K < d[heo] =K, < for all x>Xx,
d(3(logx})

Let © be the class of functions h{x) satisfying (1) and (v):

(V) iy A0
7 d(logx)

=K, 0<K<®

{(Kapoor and Nautiyal, 1981) showed that classes Q and Q are contained in A. Further, a~G=1¢
and they defined the generalized order pie,f) for entire functions f(z) of slow growth as:

plo, f)= lhfgp%

where, a(x) either belongs to Q or to Q.
Vakarchuk and Zhir (2002) considered the approximation of entire functions in Banach spaces.
Thus, let f(z) be analytic in the unit disc U, = {zeC: |z| <1} and we get:

17
1%
M, (1, )= {E_[ |f(re9)|d8} ,q =0
Let H, denote the Hardy space of functions f(z) satisfying the condition:
[ [ls,= lim M, (r,f) <
and let H,, denote the Bergman space of functions f(z) satisfying the condition:

1
It lle, = J1f(@ [ dxdy} < o0
7 T 3

For q = «, let [f]g,, = |flg., = sup{|f(z}|, zeU}}. Then H, and H_, are Banach spaces for q=1.
(Vakarchuk and Zhir, 2002), we say that a function f(z) which is analytic in U, belongs to the
space B(p,q,m) if:

D PG
It ||p_.m:{j(1ff) PEOME(r, Ddryt <
i

O<p<qze, 0<m<» and:
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11

£}, = sup{(1-1)* TM,(r,f}0< 1< 1} <co

P.A.m

It is known Gvaradge (1994) that B(p,q,m) is a Banach space for p>0 and q,mz=1, otherwise it
is a Frechet space. Further Vakarchuk (1994):

H,=H,=B(g/2,q,9)l<g=<® (8)

Let X denote one of the Banach spaces defined above and let.:

E (BX)=mi{[|f-pll:pe P}

where, P consists of algebraic polynomials of degree at most n in complex variable z.

Vakarchuk and Zhir (2002) studied the generalized order of f(z) in terms of the errors E_ {f,x)
defined above. [t has been noticed that these results do not hold good when ¢ = = v, i.e., for entire
functions of slow growth.

It 1s significant to mention here that characterization of ceefficient and Chebyshev
approximation error of entire function GASHE, u in certain Banach spaces by generalized order
of slow growth have not been studied so far. In this paper, we have made an attempt to bridge this
gap. Moreover, we have cbtained some bounds on generalized order of entire funection GASHE u
in certain Banach spaces (B(p,q,m)) space, Hardy space and Bergman spaces) in terms of
coefficients and Chebyshev approximation errors.

It is important to write here that the function a(x) =log (x), pz1 and «a(x) = exp (logx)®), 0<d<1,
satisfy the condition aeA. For a(x) = logx, our results gives the logarithmie order in place of
generalized order. So if a function f has a finite logarithmic order of finite generalized order with
a(x) =log x, pz1, then the order p of f is equal to zero.

NOTATIONS

s Ov(g)=max({1,8} if afx) € Q=v+£ ifa@)e Q. We shall write 0(E) of 0,(F)
¢+ PFlxie] =« [ca(x)], cis a positive constant
«  K[f[x;c]] 1s an integral part of the function F

MAIN RESULTS

Now we shall prove our main results.

Theorem 1: Let a(x)eQ, then the entire GASHE function u(x,y) is of generalized order p(u),
l1<p(u) <o, if and only if:

. 1 ;
- b B

> O(L{u)) (9)

where:

L{u)=limsup o(n)

= g(-nlog|a, | (%)” »
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M(r.u)= max |u(r.8) | and r.>1.

Proof: Suppose a(xicQ and p(u)<ew. Then for every €>0, there exists r(e) such that:

a{logM(r,u))

<p(u)+e(u)=p(u) for all T= 1(E)
aflogr)

or:

logM(r,u) < o {p{wict(logr)} for all r>1 (g) (10)

Now using the orthogonality property of Gegenbauer polvnomials (Gilbert, 1969) and the

uniform convergence of series (2), we have:

o, j: (F(rv(%)))z(kr)“]m (kr) = ;[sin“ec;(cose)u(r, 0)do (1)
Further, from the well known series expansion of J,, (kr), we have:
- B e e - O Ty & P Tt
and so for nz[(kr)?], where [x] denotes the integral part of x, we have:
T2 (12)
From Eq. 11 and 12 and the using the relation:
[T = @/ 2/ T+ 1))
and:
max | C; (cos6) |s% (13)
for n=[(kr)?], we now get:
o, | ke Pl 200y e (14)

T G ER (T(n+ 1)

where:
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Since:

I(n+2v)['(n+ v+ 1) % 41
(T(n+1))°

as n—e, We can choose constants K,<« and r.>1 such that:

(n+ V)WSKJE for nz1
(T(n+1))
Thus, for nz[(kr)?], Eq. 14 yields:
[ [ Kry. ¢ & M) (15)
n! 2rn

Using Eq. 10, we cbtain:

1% | Ky <k K exptor (puedogn)y =y
nt 2 r

The larger factor is minimmzed at.:

L amphn=23 , withy, =limr,

-1
= EXDWOL (=
L, = exp{or{ 1 lim

This leads to:

-1

e ol 2w 1og[ | | [LJT
p(u)-1 p(u)-1 n! K, K.\ 2t

Since w(x)e€), as n—, we have:

p(u) =1+ limsup a(n)

n—m

‘] (18)

k...
0{1055(0% \(*2];) )
Conversely, let:

limsup on)

n—se

=L (17)
oxflog( o1, | ()")")
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Suppose L{u)<e. Then for given e>0, there exists ng,=ny(e) such that:

k. 1
T ] )

for n>n,,

ol =
L{u)

where, Lu)=L(u)+=
The inequality:

SIS TR | 18
oG e I s (18)

is satisfied with some n =n{r). Then:

= kr =1
oo lCirs Y el
n=n(r+l 2 n=n{r+l 211

From Eq. 18, we have:

_ | ox)
Zrm’{a {Hu)}

We can take n(r)=E[p(w)e{L{n)ailogr +log2)}]. Let us consider the function:
p{x) = rexpl—xo” {o(x/ p(w))/ L{w)}]

We have:

1
| QBT / plu), =] 19
VX oor ooz /pa))/ Ty - B g 19
o(x) d(logx)

Ag x>0, in view of the assumption of theorem, for finite:

)
L(), dF p(u) Lu)
’ d(log x)

is bounded. So there is an A>0 such that for xxx,, we have:

1
dF[x/ p(u), ——]
T, (20)

d(logx)
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We can take A<log2. It may be seen that inequalities Kq. 18 and 19 held for
n = n, (1) = E[p(we ' {L{walogr+a)]+1. Let n,, = max (n,(e), K[x,]+1). For r>r, (n,), we have:

¢'(ngy) -0

P(1y)

From Kq. 19 and 20 it gives that.

¢
9l ()

This leads to the fact that if for r>r (n,), we let x*(r) designate the point where:

PO (R)) = max ¢x),

Srn(r)
then n, < x*(r)<n,(r) and x*(r) = p(we [L(welogr-a(r))], where:

am X L
RO

-A < or)= .
0 d{logx) - @

We have:

kr
max (I%I(E)") <€ max @(x)

ngr<n<mn (1) ng<n<m(r)
_ ™Yo [L{uadlogr — o(r))]
ey [L(walogr-erN(logr-ou(r))
= explor)po* [L(woilogr-oir))]}
= exp{Ap(w)o [L(wialogrrAl]}

For r>r(n.),

M) <3 o, |(§)"

g kr N m (1) kr N @ kr N
D L | G D S L [ G S S [ N [ Gy
a=D 2r, aengtl 2r, n=mrH 2r,

<O )+, (1) max (o, |22y )1
npr<nn () 21,

M(r,u)(1+ OQ)) < exp{(Ap(u)+ O(l))cc’l[E(u)(:c(logr+A]}a(logM(r,u)) < f(u)cc(logrﬂ\)

Since, a(x)e Qc A, now proceeding to limits we obtain:
p(u) < O(L(w) (21

Combining Eq. 16 and 21 the proof is immediate.

111



Asian J. Math. Stat., 5 (4): 104-120, 2012

Theorem 2: Let a(x)ey then the entire GASHE function u(x,y) is of generalized order p(u) if
p(u)<O(LE)).

where:

it aln)
L = e et 7T}

Proof: Using Eq. 2 with 12, we get:

2o, | k., T@+l) o O | K, o Ko 22
M(r’u)gg n! (2) F(n+v+1)gK§‘ n! (2) KM(Z’f) @2)

where, K1is a constant and:
RPN ) Lo
f*(z)= ;T z
It follows from Eq. 3 that *(z) is an entire function. Since:
log [%] logras r— o,

it follows from Kq. 22 that:
plu) = p(f*)
Now applying (Kapoor and Nautiyal, 1981) to the function f*(z) we get the required results.

Theorem 3: Let a(x) e & and u(x,y) be a GASHE function in the disc |z | <r,. Then the generalized
order of uix,y) satisfy:

(i) Pz 8(L*(u)
(i) (L *(u))= p(t*)

where:

L *(u)=limsup o(n)

n—ea

1

a(log(|E, | (k/2r )

and:

oin)

olog(|E, | (ks / 26 )7 )

L **(u) =limsup

n—e

Proof: Let GASHE u(x,y) be analytic in the disc U = {zeC: |z| <r;} and set:
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Ey 1
_ 1 B g q
Mq(r,u)f{ﬁ:[\u(re [ dey, q=0

{(Vakarchuk and Zhir, 2002), we say that a function which is analytic in U belongs to the space
B(p,q,m) if:

! wek-ba L
0l qu={fr=1) * % M?(ruwydr}=
1]
(<p<qeoe, O<m<eo and:

11
o ll,qm=supi@ -1 "M (ru)l<r<g}<wo

We have for PeP,, that:

1

R O " 4O e
||u—PHp,q,m=[£(r—1) {E_J;\u—P\ 46} dr]

In view of Kq. 22 we get:

T o e = [

or.
E, (B(p,q,m),u) < K (5, )E, (B(p,q,m), £*) (23)
where:

E,(B(p.q.m).£*)=inf{|| £*—pll, P 7y i}, ={p: (2} = > 00, (kpy /22, , real}

r=0
From Theorem 1, for any given e>0 and all n>n, = n, (&), we have:

- (24)
exp{noc [om)(p(w) - 1]}

k 1
o | (—) <
| n\(2ru)

We shall prove the result in two steps. First we consider the space B{(p,qm), q = 2, O<p<2 and
mz1. Let:

=3[ ]

be the nth partial sum of the Taylor series of the function f*(z) (Vakarchuk and Zhir, 2002) and
using (Reddy, 1972) extension of Bernstein theorem for given £>0 there is an n,(e)>0 such that:
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E,(B(p,2.m),f*) < B~ {(n+1)m+lm[JHz o {kl;]] }

Using Eq. 23 we get.

L
2

E, (B(p,2.m),u) <K(r,)B» {(n+1)m+1 m(———ﬂ{z e, [ [kl;]] }

for all nzn,(e), where B(a,b)(a,b>0) denotes the beta function. By using Eq. 24, we obtain:

1

B;{(ru—l)m-*—l;m(l—;JKrﬂ} . .
s PRCACE (25)

k " S| am+1) || i=en
[Z_ru] exp{(rﬁl)u {(p(u)—l)}

E,(B(p,2.m),u) <

where:

[AJM[LJ Xp{(nu)a*[u(nu)]}
o) e L g
- ]
GGG

Set:

k ol
= ﬁ £ - - o1) i " [i] iyl M i~ taty 26
ot b oG L e g
21,

Sinece, @e)<l, by virtue of Eq. 25 and 26 we get.:

B;‘_{(nJr Dm + l;m[llJK(ru)}
p 2

(- gy [21;} expin - Ty {%}

E (B 2mpu) < (27)

For n>n,, Kq. 27 gives:

B(u)—lz a{n+1) 1

1

1
GG oy
o| ——— [<1log| |E, || — + log
p n 21,

(1- ¢ (o)y
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But:
ld)
Fn+Dim+ DI m| ———
B{(n+1)m+l;m[llﬂ P 9
P 2 F[n+l+lJm+l
2p
Hence:
—[(n+m] (“*‘)“‘*% l _ l
[ . [1 M e [(n+1m+1] [p 2}
B|(n+m+Lm| —=|; ——
p 2 [(m%ﬂ_)mﬂ] {[ 1 1 j :|[n+5+me+f
e ® n+—+— |m+1
2p
It gives:
B {(n+ ym+ l,m[l —lﬂw ;1 (28)
p 2
Applying the imits, we get:
p(u)y—1= hj};} sup n) —~=L"*{u)
o log[mn{;;} }
or!
p(u)=0(L*u)) (29)

Using the orthogonality property of Gegenbauer pelynomials (Gilbert, 1969) and the uniform
convergence of the series (2), for any gen,_ |, we get:

V+—

1 2
() |
o, r21+ » [I“T\i(kr)_vjm (kr)= !sm“ec; {cos0)(u(r,0)— g(r,0))d0

(30)

From Kq. 12-15 with (Vakarchuk and Zhir, 2002) in above we get.

%[?‘—;] B™ {(n+ Dm + l;m[é—%ﬂ < 2°’E, (B(p,2,m);u)

Then for sufficiently large n, we have:
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o) N o)

Ly “1in i
o log 10l +log{B™ | (n+1)m+Lm 11
E {(n+1)! P 2
of log| 27 —2—

Kn,
2r,
a(n)

a[log[ (:j q: + log{BT;l {(n +1)m+1; m(i —%IH

=

Applying limits and using (Kapoor and Nautiyal, 1981) for, we get.:

L** (w)zpf*)-1
or:
OL**(u))=pd*) (31)

Now we consider the spaces B(p,q,m) for O<p<q, q # 2 and q, m=1. (Gvaradge, 1994) showed
that, for p=p,, q<q; and m<m; if at least one of the inequalities is strict, then the strict inclusion
B(p,q,m)cB(p,,q,,m,) holds the following relation is true:

1
11 —
T 11 i

lla H’l,cﬂ:mli 2t [m[g_a]} e Hp,q,m

for any ucB(p,q,m)}, the last relation gives:

S

11

1 1™

E,(B(p,, qm, Y u) £2° Hp qﬂ " E.(B(p.q.m) 1) (32)

Let ueB(p,q,m) be an entire transcends funection solution of Helmholtz Eq. 1 having finite
generalized order p(u). Consider the function:

® kr ! .
()=S0 | =2 | 2'
-2 ]

Now:

ooz (2fer{ (22 2] Ee]

Using Kq. 23 we get.
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E,(B(p.gm)u) =K(1)E (B(p.q.m) ™)

< K( )B=[(n+ Dm + l;m(%—l)] S e, |

n=k+

. 33
B= {(n+1)m+l;m[;lﬂ ( )

< q

1 (p(a)[%] exp {(n e L‘)‘gﬂ}

For n>n,, from Eq. 33 we get:

a(n+1)

n-1/n Bi {(I‘Hr Dm+1; {11J}
of 7 {1og((E, |{ﬂ] “log P_a
[1+ l} 2r. (1 la)

n

plu)—1z

-1/n

Since @(x)<1 and aeQ, applying the limits and using Eq. 28, we get:

c{n)

1o DE“ [%TT (34)

For (ii) inequality, let O<p<q<2 and m,q=1. By Eq. 32, where p = p,, 9 =2 and m; = m, and the

p(u)—1=limsup

oo

condition Kq. 24 is already proved for the space B(p,2,m), we get:

limsup o) —~ 2 limsup () < 2 p(f*)-1
M Y1 kY1 [ (35)
af log \EH(B(p,q,m);H)I/[;j oy o log |En(B(P,2,m);H)|{Z} o
Now let O<pz2<q. Since, we have:
My(ruw) =M (ru)0<r<g
Therefore,
1
2"FE (B(p,q,m ) = 10| ﬁ)"”BE {(n+ Dm + l;m[l—lﬂ (36)
{(n+1)! 2r, P q

Then for sufficiently large n, we have:
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o) N o)

2y |E, | 2l | Py | o - .m{1-L
a[log[(krgfzn)“}} u{log[(ﬂﬂ)!] }10;{3 {(nﬂ)mﬂ’m[l’ qm

By proceeding to limits and from Kapeor and Nautiyal (1981), we cbtain:

a(n) a(n)

limsup

n—o

=limsup — =p(f*)-1

T (loe(e, [ (37)
alog{Enw[f'—lﬂ o 5

Now we assume that 2<p<q. Set q, = q, m; = m and 0<p <2 in the inequality Kq. 36, where p,
is an arbitrary fixed number, Substituting p, for p in Eq. 36, we get:

1
2°17E, (B(p, q,m); ) 2 el Koy {(n hmo L m{l, 1}} (38)
(n+1)! 2r P q

Using Kq. 38 and following the same analogy as in the previous case O<p<2<q, for sufficiently
large n, we have:

on) . o)

o{mg{ e } ' } c{log [—('r‘fﬂ)‘,} } 1og[Bﬂm {(m Dm+ 1;m[% ém

Proceeding to limits and using (Kapoor and Nautiyal, 1981), we get.:

limsup on)

n—som

Sy

n

(39)

|E, |

S

Combining Kq. 31, 35, 37 and 39, we obtain the result (11). This completes the proof of
Theorem 3.

o log

Theorem 4: Let u(x,y)cH, be a GASHE function on the dise <1, and a(x)eQ. Then the

generalized order of u(x,y) satisfy:

(1) pw) =6y
(i) (L (w) > p(f*)
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where:

an)

ﬂ(u) = limsup B
™ a(log[| E, (H,.u)| (k7267 ]*)

and:

o)

L"{(u)=limsup =)
7 allogl B, (H,, w) | (kyy /20)7]7)

Proof: We can obtain the relation:

E, <K(g)E,(H, %
<K £, (2) [k,

<K 20, |

j=ntl

exp {(n + Do {LEH; 11)}
D1 |[ =
P I

n+
k j=ntl
21,

=K(g)

In view of Kq. 268, we get:

En(Hq,u)[zﬁ} <K (5)(1- p(e0)) exp {—(n 1o [ (ln + 1))}
* p(u)—1

Thus gives:
p(Uj—1= a(n-1) +O(1)
1 1 1
a1 1°g[ [ r }] 8 ot
ErH-l(Hq’u) -
2r,
Applying the limits, we get.
p(u)—1=L(u) = p(u) = B(L(u))
This completes the proof of (). (i) In view of Eq. 8, we see that.
CEa(HL,u)2 E(B(g/2:q:q)sw).1 £q. (40)
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where, C_ is a constant independent of n and u.
Using Kq. 26 with 40 we get.:

chn(Hq=u)zL£an+ll{kI“] }Bﬁ(nﬂ)qn;u
2" 2r,

or!

o(m) o)

= limsup - =p(f*)—L1<q<

limsup 5
" oflog(|e, |/nt)® +log(B™[(n+1)q+ L1])+ O(1)]

n—smo ~ kr "
CL|‘—11 Nog {EB(HWH){Z_IEJ} }

For the Hardy space He, we have:

E,(B(p. o)) <E, (0.1 < p< o (41)

Using Eq. 41, the inequality (40} is true for q = e,
Henee the proof is completed.
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