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ABSTRACT

Simulation studies involving linear and quadratic functional forms of continuous covariates
were carried out under various combinations of two baseline hazards. These include combination
of two Weibull baseline hazards, combination of two Lognormal baseline hazards and combination
of Weibull and Lognormal baseline hazards. The study examined the performances of various
models progressively within the context of model misspecification. Three eriteria; Likelihood Ratio
(LE), Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) were used for
model comparison. Under LR and AIC, the correctly specified models generally performed better
than the misspecified models across all the baseline hazards combinations and under both linear
and quadratic functional forms of continuous covariates but not for all cases under BIC. Models
with combination of two Weibull baseline hazards performed best under the two functional forms
of continuous covariates while those having combination of two Lognormal baseline hazards
performed least.

Key words: Survival time, competing risk, baseline hazards, frailty, P-splines, continuous
covariate, model misspecification

INTRODUCTION

Analysis of survival times data has gained a considerable attention, particularly in the field of
medicine, from where the conventional denotation Survival analysis arises. The main conecern of
survival analysis is analyzing failure time data, where the response variable gives time to a
particular event, known as a failure and some of the true response times are not directly cbserved
{Clark et al., 2003).

Often, instead of considering time to a single event, interest may be to distinguish between
various types or causes of events. The modelling technique for such data structure 1s called
Competing risk model. This 1s because the smallest realized time, the cause specific (risk specific)
failure time makes the failure times for other causes right censored. In other words, the analyst
only observes the minimum of the failure times (Klein and Andersen, 2005).

In modelling survival data, the nature of the underlying baseline distribution plays a vital rele
and this needs to be taken into account during analysis. For example, some underlying baseline
distributions may have proportional hazard model assumptions while others may satisfy accelerated
model assumptions and these may determine the type of analysis required for such data
{(Hutton and Monaghan, 2002),

Model misspecification has been a major problem in statistical analysis that requires serious
attention, as no result can be more unreliable in modelling than that from a misspecified model.
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One popular way of model misspecification in survival analysis 1s to ignore frailty information when
data involve identified clusters such as measurements on the same individuals or clusters of
subjects (e.g., family, litters or geographical areas). Ignoring frailty information implies that no
attention is given to the between clusters heterogeneity and the within clusters dependence and
this often presents unreliable results (Henderson and Oman, 1999).

Functional form of regression equation is often not known in advance and must be decided
upon onece the data have been collected and analyzed. Correct functional form, however, are
essential in enhancing the power of the moedel. Linear and quadratic regression functions are often
used as satisfactory first approximation to regression functions of unknown nature. They may be
used even when theory provides the relevant functional form but the known form is highly
complex.

Most often, the effects of continucus covariates on response variable i1s not linear
{Adebayo and Fahrmeir, 2005; Kneib and Fahrmeir, 2008). There are different techniques known
in literature for describing non linear effect of covariates. One simple way is to transform such
covariate. This approach 1s limited by the fact that the transformation required for a given dataset,
may not be known. The Penalized splines (P-splines) have been an attractive approach for
modelling nonlinear smooth effects of covariates within the additive and varying coefficient models
framework {(Adebaye and Fahrmeir, 2005, Huang and Liu, 2006; Thompson and Resen, 2008).

The main objective of this study 1s not to estimate the cause-specific risk but rather to
investigate comparatively, the behaviours of models with overall baseline hazards having the above
cause-specific combinations under the framework of model misspecification. In the context of this
study, model will be adjudged misspecified if it ignores frailty when it is actually present.

MATERIALS AND METHODS

Competing risk model: Consider T>0 which is a continuous random variable representing
survival time, then the formulation of competing risk problem (Cox, 1959; Gail, 1975), assumes that
there are m potential failure times T, ..., T in which one chserves T = min (T,,... T} and the cause
of failure R ={r: T <T_¥s, s = 1,... m)}. The cause specific hazard function due to cause r can be
given as:

Pr(t<T<t+AL R=1[T>1
A= lim 0 HALR=r[T> ) (1)
Ato0 Af

which can be defined (Chiang, 1968; Holt, 1978) as the conditional probability of experiencing
event of failure from cause r in the small interval [t, t+At], given that none of the events has been
experienced prior to time t.

The overall hazard funection is given as:

Pr(t<T<t+AtT21) (2)
At

wH= i
©= At

This is the conditional probability of experiencing event of failure from all causes in small
interval [t, t+At], given that such event has not been experienced prior to t.

When the causes are assumed to be distinet, then the cause specific and overall hazards are
related by:
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At :ikr(t) (3)

In modelling the effects of covariates on the cause-specific hazard functions, the model specified
by Cox (1872) is often adapted. Suppose that two causes are involved (as in this study), then the
cause-specific model for cause r can be given by:

A (t]2) =2 (D exp(v/Z) (4

where, r, r = 1, 2 indexes the cause or type of failure (or risk type) and i, I = 1,..., n, indexes
individuals, A, (t) is the unspecified baseline hazard function given in (1) and Z is a vector of time-
independent covariate. The model for the overall causes, from Kq. 2 and 3 can be given by:

A (t]z) = Ao (D exp(vZ) (5)
Where:
Aglt) = A (D) +HA,()

Survival model with frailties: Many authors have developed frailty models that explicitly
formulate the nature of dependence (Klein, 1992; Nielsen et al., 1992). Shared frailty introduces
a random effect. term for each group which might reflect the variation in the baseline hazard from
group to group. The random variable acts multiplicatively on the hazard rate of failure in which
case a large value of frailty increases the susceptibility of failure for all subjects within the group.

Suppose there are G independent clusters and X; and C are the event and censoring times,
respectively for the i-th subject in cluster g (g =1,...,G,1=1,... ,n). Let Z_ be a vector of covariates,
then the observed failure times for the gi™ subject is given by:

T, =min (X, C,). If for each cluster, there is an associated frailty term w shared by members
of the cluster, then Eq. 5 can be written as:

Ay (Z,w) =w, A (Dexp (VZ,) (6)

where, A, (t) is an unspecified baseline hazard function. The frailties are usually assumed to come
from a frailty distribution f (w), belonging to some parametric family of distributions with positive
support. Gamma and lognormal distributions are commonly used.

One popular approach for analysis of frailty model (Nielsen et al., 1992; Andersen ef al., 1993)
is the counting process N (t) defined by:

Nei () {1 i &, =1 in interval (0,7) (7)

0 otherwise

where, T denotes the maximum follow-up time and at risk indicator process Y _(t) which is defined
as:
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. b N . .
Yei () = {1 if the gi™ subject is exposed to the rigk at time t (8)

0 otherwise

Then, the dynamies of N,(t) can be described by its intensity process given by:

)

The partial likeliheood is given by:

L(%.%,.0 S (fw,z) 8 (10)

g=1

w,7)= ﬁ{rl[exp( 12 (n

Because frailties are not observed, then Kq. 9 cannot be computed from the cbservations and
therefore the marginal partial likelihood is obtained by integrating over the frailty, so that:

)T

Generalized Additive Model (GAM): The GAM method permits smoocth nonparametric
modelling when parametric assumptions cannot be guaranteed, especially for the baseline

L (v, 2.0 YoV ftw,,0)dw, (11)

w,7)= ﬁj {Hexp( Ik (w2}

=l

hazards and continuous covariates. Within the context of generalized additive models
{(Hastie and Tibshirani, 1990), we replace the predictor in (8) with additive predictor which in a
simpler and more specific way that suits this study and this can be written as:

A = exp (1) (12)
with:
ni{t) =+ ) +y! Z4b,

where, f(t) is a time-varying log-baseline effect. fi(x;) is a non-linear effect of time independent
continuous covariates x;. vy is a linear fixed effect of categorical covariates 7. b, is the cluster-
specific random effect to account for the frailty, with b, =b,if i-th individual is in cluster g,

g= 1J sG'

Bayesian P-splines approach for estimating the unknown functions (f)): A number of
competing approaches is available for estimating nonlinear function f of continuous
covariates. These include smoothing splines (Hastie and Tibshirani, 1990), local polynomials
(Fan and Gijbels, 1996), regression splines with adaptive knot selection (Friedman and Silverman,
1989; Stone et al., 1997) and P-splines (Eilers and Marx, 1996; Marx and Eilers, 1998). In this
study, Bayesian version of P-splines has heen used following (L.ang and Brezger, 2004).

Bayesian analysis requires assignment of appropriate priors to all the effects. Therefore, for the
fixed effect parameter v, diffuse priors has been assumed as:

P(y)=const
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For the baseline effect fi(t) and continuous covariate effect f;, Penalized splines (P-splines)
(Lang and Brezger, 2004) have been assigned. For the random effect b, independently and
identically distributed Gaussian Prior, b, ~N(0O, 1%,) has been assigned.

Criteria for model comparison: Choosing the most appropriate parametric models can be
difficult. Graphical approaches can be used for evaluating the appropriateness of exponential,
Weibull and lognoermal models. Various model diagnostic eriteria are known in literature. The
Loglikelihood Ratio {LR) has been proved to be quite reliable. However, Akaike's Information
Criterion (AIC) provides a widely accepted approach for comparing the fit of models with different
underlying distributions. These criteria along with the Bayesian Information Criterion (BIC) have
been used in this study. These criteria are described thus:

Likelihood Ratio (LR) is defined as:

LR= -2 (log {likelihood,_.} -log{likelihood..;)

Cox

Cox

where, log {likelihood,, .t and likelihood .} denote the values of the partial likelihood for the fitted
standard Cox model and the Cox model with spline estimated link, respectively.
Alkaike Information Criterion (AIC) is defined as:

AIC = -2log (likelihcod)+2 (nknot+d+p -2)
Bayesian Information Criterion (BIC) is defined as:
BIC = -2log(likelihood)+Hog(n) (nknot+d+p -2)

where, for AIC and BIC, nknot and d denote, respectively, the number of knots and degree of
spline, p 18 the number of covariates and n is the number of observations.

In this study, 20 knots have been chosen and the degree of spline is 2.

This study has been motivated by a clinical study carried out on malignant cancer patients at
the Department of Plastic Surgery, University Hospital of Odense, Denmark. Patients were
observed during years 1962 to 1977 (after a malignant cancer operation), either up to the time of
their death (event of failure) or the end of the study (1977) which is the right censoring time. The
data had earlier been analyzed by Andersen ef al. (1993), Fahrmeir and Klinger (1995) and
Abiodun (2007). The survival time was the time period (in days) from the day of operation till time
of death. There were two possible causes of death which are death due to cancer and death that are
non cancer related. Patients who were still alive at the end of the study were right censored.
Explanatory variables collected include sex of the patient, tumour width, ulcer which indicated the
presence or absence of ulcers, age of the patient at the time the operation was performed and year
in which operation was performed.

Figure la-c show the baseline hazard plots for the overall cause of death (combining both
cancer related and non cancer related), the cancer related cause (referred to as cause 1) and the
non cancer related cause (referred to as cause 2), respectively. As observed from the plots, the
baseline hazard function for the overall cause of death locks like a trade-off between the two cause-
specific hazard functions which can be interpreted to be equivalent to their sum under the
assumption that the two causes are distinct. This study has therefore been predicated by an
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Fig. 1{a-c): Hazard plots of the malignant data. (a) Hazard funection for overall cause, (b) Hazard
function for cancer related cause and (¢) Hazard function for non cancer related cause

assertion premised on above scenario, that in real life situation involving competing risk problem,
an overall cause of failure could have an underlying survival distribution which 1s a combination
of two or more distinct cause-specific distributions. Against this background, we have, in this study
considered overall causes as consisting of two specific causes which have been variously combined
from Weibull and Lognormal distributions as follows: Weibull-Weibul, Lognormal-Lognormal and
Weibull-Lognormal.

The order of arrangement, of causes 1s immaterial, therefore Weibull-Lognormal could also have
been combined as Lognormal-Weibull.

ANALYSIS WITH SIMULATED DATA

In many clinical studies where the aim is to identify prognoestic factors for disease specific
mortality, data requiring specific causes of death are often either not available or not reliable
{Percy et al., 1981). This makes it difficult and sometimes impossible to differentiate between cases
of death that are actually related to the disease of interest and those cases of death that are related
to other causes that are independent of this disease. In this study therefore, we have resorted to
simulating data that mimic the competing risk data that are usually found in real life situations.

Data were simulated from the frailty version of the competing risk model:

A0 = exp(f, () +£,(x,)+ 0.5Z, +b,)  forr=1,2 (13)

Where:

f.(t) =log 4, (t)
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The funectional forms of the continucus covariates used are similar to those by Lang and
Brezger (2004).
Combinations of baseline hazards considered are:
+ Combination of two Weibull baseline hazards
A () ~Weibull (shape =«, scale =1),r=1, 2
+  Combination of two Lognormal baseline hazards
Ay (t)~ Lognormal (p,,=0,0,=1),r=1,2
+  Combination of Weibull and Lognormal baseline hazards
A (L)~ Weibull (shape = ¢, scale = 1)
and:
Ay (t)~ Lognormal (p, =00, =1)
Independent censoring times were generated from exponential distribution as:
Ci~ Exp (4)
binary covariate was generated from Bernoull distribution as:
Z,~Bernoulli (1, 0.5)
The continuous covariate was generated from uniform distribution:
X~U(-3,3)
the frailty term was generated from Normal distribution as:
b, ~Normal (0, 0.5)

The observed survival times is thus t;, = min (T;, T,, C) and censoring indicator is set as:

11!

i

5 _ 1 if a failure of type r occurs on ith individual
T |0 otherwise

This model is simulated for i =1,... .500 using 200 replications.
The data generation were done using R package version 2.6.1.

The following models were progressively analysed under this simulation setup:
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Model 1 = f,(t)
Model 2 = f,(t)+by
Model 8 = f(t)+f, (x)+y'Z
Model 4 =f(t)+f (x)+y"Z+b,

where, f (t) is the log baseline hazard effect, (b)) is the cluster-specific random effect, fi(x;)is a non-
linear effect of the continuous covariates x; which takes both the linear and the quadratic forms
as earlier described.

Model 1 contains only the baseline, Model 2 contains baseline and frailty, Model 3 contains the
baseline, the functional forms of the continuous covariates and the categorical covariates while
Model 4 1s Model 3 with the cluster-specific random effect (frailty). In the context of this study,
models 1 and 3 are the misspecified models since frailty is ignored in the analysis, while models 2
and 4 are correctly specified. We thus compare models 1 and two when no covariate is controlled
in the analysis and models 3 and 4 when covariates are controlled in the analysis.

Estimation in this study was done using Empirical Bayesian inference based on Restricted
Maximum Likelihood ((REML) technique. The appreach has also been incorporated into the BayesX
{(Belitz et al., 2009), a software used for all the analyses. It is software for Bayesian inference in

structured additive regression models.

RESULTS

Table 1 presents the results of correctly specified and misspecified models under the three
baseline hazards combinations. These include the values of the three criteria; Likelihood Ratio (LR),
Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC), for the linear and
quadratic functional forms of continuous covariates. Based on the three eriteria, model with smaller
value will be preferred.

Under the linear functional form of continuous covariates, it 1s observed that when the
combination of baseline hazards involves two Weibulls (Weibull-Weibull) and no covariate is
controlled in the analysis, the correctly specified model is substantially better than the misspecified
model. This i1s so under LR and AJIC criteria but no remarkable difference in performance
improvement 18 seen under BIC. For example, LR values 1s 436.34 for correctly specified model
(Model 2) compared to 450.56 for misspecified model (Model 1). The corresponding values of AIC
are 449,61 and 454.71 for correctly specified and misspecified models, respectively. However, the
values of BIC for correctly specified and misspecified models are 459.18 and 459.32, respectively.

The performances under the combination of two Lognormal baseline hazards
{Lognormal_Lognormal) are generally in the same direction as for the combination of two Weibulls.
However, the differences in performances in favour of correctly specified models here are not as
substantial as for the combination of two Weibulls. For example, the values of LR are 524.12 for
correctly specified model compared to 539.61 for misspecified model. The corresponding values of
AIC are 542,76 and 547.13, respectively while for BIC, the values of correctly specified model is
553.23 and that of misspecified model 15 554.45. When the baseline hazard involves combination
of Weibull and Lognormal distributions (Weibull-Lognormal), the results also generally follow the
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Tahble 1: Values of the criteria for linear and quadratic functional forms under the three baseline hazard comhbinations

Linear function Guadratic function
Model LR AIC BIC LR AIC BIC
Weibull-Weibull
1 450.56 454.71 459.32 451.54 455.42 460.26
2 436.34 449.61 459.18 438.41 450.41 459.78
3 446.34 452,25 459.25 446.94 453.06 459.98
4 432.26 445.46 459.12 435.17 450.32 459.34
Lognormal-Lognormal
1 539.61 547.13 554,45 540.27 548.32 555.06
2 524.12 542.76 553.23 525.09 542.15 555.36
3 541.34 544.60 553.78 542.66 545.02 556.00
4 526.21 539.43 553.63 530.08 540.19 555.89
Weibull-Lognormal
1 462.59 467.62 47217 463.30 469.97 475.68
2 447.29 462.78 471.20 447 56 465.39 473.05
3 460.97 466.98 471.00 459.92 466.45 474.72
4 446.08 460.65 470.36 445.08 462.24 470.60

pattern of two Weibulls and two Lognormals. However, correctly specified model outperformed the
misspecified one under LE and AIC more substantially than for the two Lognormal baseline
hazards but less substantially than for two Weibull baseline hazards.

When covariates are controlled (Models 3 and 4), the pattern of performances of correctly
specified models compared to the misspecified models under the three eriteria is similar to when no
covariate is controlled. However, there are slight improvements in correctly specified models when
covariates are controlled during analysis than when no covariate is controlled under LR and AIC
which is not clearly captured by BIC.

The results under quadratic functional form of continucus covariates show that though the
values of the three criteria are slightly higher, the pattern of the performances of the correctly
specified models compared to the misspecified models are generally similar to those under the linear
functional form. Also the behaviours of the three criteria in capturing the model performances
under the various combinations of baseline hazards are similar to those of linear functional form
of continuous covariates. For example, as observed from the table, under LR and AIC, best
performances of correctly specified models over the misspecified models (whether or not covariates
are controlled) are found in medels with combination of two Weibull baseline hazards and worst

performances are found in the models that involve two Lognormal baseline hazard combinations.

CONCLUSION

We carried out a simulation study involving varicus combinations of two baseline hazards
which included combination of two Weibull baseline hazards (Weibull-Weibull), combination of two
Lognormal baseline hazards (Lognormal-Lognormal) and combination of Weibull and Lognormal
baseline hazards (Weibull-Lognormal) using two functional forms of continucus covariates, namely
linear function and quadratic function, under the framework of model misspecification. Three model
diagnostic tools were used for model comparison, namely, Log-likelihood Ratio (LE), Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC). It was observed that
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correctly specified models generally performed better than the misspecified models across all the
baseline hazards combinations and under both linear and quadratic functional forms of continuous
covariates. Although, slight improvements in performances were chserved when covariates were
controlled over when no covariates were controlled, the improvements were not remarkable,

In conclusion, the simulation studies have shown that models with combination of two Weibull
baseline hazards was most responsive to model misspecification, followed by those involving
combination of Welbull and Lognormal baseline hazards, while the models involving the
combination of two Lognormal baseline hazards was least responsive to model misspecification.

A possible extension of this study is to investigate the performances under various sample sizes
and different censoring percentages.
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