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ABSTRACT

Partial least squares regression is a statistical method of modeling relationships between Y4,
response variable and X, explanatory variables which is particularly well suited for analyzing
when explanatory variables are highly correlated. In partial least square part, some model selection
criteria are used to obtain the latent variables which are the most relevant variables describing the
response variables. In this study, we investigate the performance of Partial Least Squares
Regression-the Nonlinear Iterative Partial Least Squares (PLSR-INIPALS), Partial Least Squares
Regression-the Variable Importance in the Projection (FLSR-VIF) and the Genetie Algorithms
Partial Least Square Regression (GAFLSR) when the fitness function is the Information
Complexity Criterion (ICOMP) for model selection. We compared the performance of these methods
with real world data and simulation data sets and used the adjusted R square (R”;) values to
quantify the adequacy of the models.

Key words: Genetic algorithms, ICOMP, partial least square regressions, variable selection,
variable importance for projection

INTRODUCTION

The PLSR’s goal is to predict or analyze a set of response variables from a set of independent
variables or predictors. This prediction is achieved by extracting from the predictors a set of
orthogonal factors called latent variables which have the best predictive power. These are
constructed through the use of latent variables which maximize the covariance between predictors
and explanatory variables. This construction follows an interative procedure to ensure that the
latent variables are orthogonal (Lopes et al., 2000). In the past, PLS regression was considered to
be almost insensitive to naise, therefore, there was a common acceptance that no feature selection
was necessary to build a better predictive model (Leardi and Gonzalez, 1998; Lawlor et al., 2003;
Lawrence et al., 2006; Mardikyan and Darcan, 2006; Zamani ef af., 2011). Today, it has been
widely accepted that a feature selection has some advantages. Although, PLS is a well-working
method to model highly multidimensional and collinear datasets, the interpretation and
understanding of the predictive model and its results are more difficult (Wold et al., 1996). Feature
selection can also help to build a better predictive PLS model with fewer features (Kubinyi, 1996).
The PLS regression combined with the VIP scores is often used when the multicolhnearity is present
among variables, however, there are few guidelines about its uses as well as its performance
{Chong and Jun, 2005; D’Ambra and Sarnacchiaro, 2010). An optimal way to do variable selection
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is to try all combinations of variables and select the best ones. This sounds simple, but is, in practice,
impossible for a number of reasons. The selection of the most adequate regression model can be
stated as an optimization problem with the objective to select those independent variables that
maximize the adequacy of the model according to a statistical ecriterion (Paterlini and
Minerva, 2010). Another approach to select variables is to apply an optimization algorithm such
as genetic algorithms. Sinee, the problem of variable selection can be formulated as a combinatorial
optimization problem. A Genetic Algorithm ((GA) is a technique somewhat inspired by the theory
of evolution. It mimics selection in nature by evaluating models consisting of certain combinations
of variables in a number of generations (Andersen and Bro, 2010).

The purpose of this study was to explore the nature of the GAPLSE method and to compare
with PLS-NIPALS method and the PLSR-VIP methods through computer simulation experiments
and a real data set using the R® ; values to quantify the adequacy of the models.

PLSR MODEL AND VARIABLE IMPORTANCE FOR PROJECTION

PLSE 1s a latent variable based multivariate statistical method forms from combination of
partial least squares and multiple hnear regression. It can be understood from various perspectives
a way to compute generalized matrix inverses, a method for system analysis and pattern
recognition as well as learning algorithm (Martens and Naes, 1989). The intension of PLSR is to
form components that capture most of the information in the X, which 1s useful for predicting
response variables, while reducing the dimensionality of the regression problem by using fewer
components than the number of X variables (Garthwaite, 1994). In PLS regression analysis, many
algorithms are used to obtain latent variables. The objective of all linear PLSR algorithm is to
project the data down onto a number of latent variables (t, and u,) and then to develop a regression
model between latent variables. It uses both the variation of X and Y to construct latent variables.
Algorithms work with different sets of variables by maximizing the covariance between them. For
the convenience of the caleculations and not to be time consuming, the choice of algorithm depends
to the shape of the matrices. For example, if there are many observations and few variables, it 1s
better to work with a data matrix that dimensions depend on the number of variables. An often
used algorithm i1s the NIPALS (Non-Linear Iterative Partial Least Squares) algorithm often
referred to as the classical algorithm. The development was initiated by Joreskog and Wold (1982)
and Wold {1966) and later extended by Lindgren and REannar (1998}, Woald et al. (1983) and
Wold et al. (1984).

In PLE regression and in all algorithms X, 4 represents the data matrix of N observation units
on K explanatory variables and Y., the data matrix of N observation units on M response
variables. NIPALS algorithm composes of two loops. The inner loop is used to attaint, and u,
{a=1,..A) latent variables, where A is the number of the latent variables. Then, a convergence is
tested on the change in u. If convergence has been reached, the outer loop 1s used sequentially to
extract p,, q, from X and Y matrices. In this algorithm a regression model between latent variables
is written as follows:

u =btte, a=1,. A (1)

where, e_is vector of errors and b, is an unknown parameter estimated by b,=(t't,y't'un, . The latent
variables are computed by t, =X, w, and u,+Y,q,, where both w_ weight vector for X and g, loading
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vector for Y have unit length and are determined by maximizing the covariance between t_ and u,.
X and Y data matrices are deflated at the end of each iteration as X, ,, = X -t,p’, where x, = x and
p.=Xit/(tit,)and Y,,, = Y,-b.t,q’, where Y, =Y for to use in the next iteration. Letting a, :Bata be
prediction of u,, the matrices ¥ and Y can be decomposed as the following (Li et al., 2002):

A,q1F, (2)

=

A
X=3tp+EandY =
=1

&

where, E and F are the residuals of X and Y after extracting the first “A” pairs of latent

variables.

The objective of variable selection is three-fold: improving the prediction performance of the
predictors, providing faster and more cost-effective predictors and providing a better understanding
of the underlying process that generated the data (Guyon and Elisseeff, 2003). Variable
Impartance for Projection (VIP) is a variable selection eriterion which is a weighted sum of squares
of the PLS-weights and thus a summary of the importance of a variable for the modeling of both
X and Y (Wold ef al., 2001). The VIF value was derived from the partial least squares was
considered as a variable selection procedure. It is a statistic of summarizing the contribution that
a variable makes to the model (Waold, 1994). It gives the value of each explanatory variable in
fitting the PLS model for both explanatory and response variables. The VIP scores and the beta
coefficients are obtained by FLS regression can be used to select the most influential
variables (Chong and Jun, 2005). The VIP score can be estimated for jth explanatory variable by:

S wibltit

PRARL Y
VIP = [Kuxoe (3)
| ST

where, w,is a weight of the jth X-variable to the ath latent variable which is obtained by NIPALS
algorithm (Chi-Hyuck ef al., 2009). Weight values can be interpreted as the contribution of the jth
explanatory variable to the ath latent variable. The VIP score equals to 1: Greater than one rule
is generally used as a criterion for variable selection (Chong and Jun, 20085).

GENETIC ALGORITHMS BASED VARIABLE SELECTION FOR PLSR USING ICOMP
CRITERIA

(A 1s a search technique used in computing to find true or approximate solutions to
optimization and search problems which are a particular class of evolutionary algorithms that use
techniques inspired by evolutionary biology such as inheritance, mutation, selection and crossover
{Goldberg, 1989). Details on the algorithm used can be found in the literature (Leardi ef al., 1992;
Leardi, 1996; Xia et al.,, 2009; Hasheminia and Niaki, 2008; Sinha and Chande, 2010;
Noorizadeh and Farmany, 2011). It is interesting to notice that several authors have published
papers about feature selection by GAs, each of them using a different GA structure, sometimes
rather far from the standard algorithm. This demonstrates the need to modify the algorithm
according to the peculiarities of the problem to be solved. In the case of feature selection, for
instance, a chromosome is made by a very high number of genes {as many as the variables), each
of them being just 1 bit long (0 = variable absent, 1 = variable present). Leardi ef al. (1992) use a
simulated data set to show that a GA can always find the global maximum of a simple problem, in
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a time much shorter than the time required by a full search. Lucasius et al. (1994) showed that a
(5A generally performs better than simulated annealing and stepwise regression, on the other
hand, Horchner and Kalivas (1995) demonstrated that simulated annealing can give the same
results (Leardi, 2001),

The performance of the regression model, which is usually represented as the Root Mean
Square Error in Prediction (RMSEP) is optimized by GA procedure. It was reported that the
GA-based methods could effectively reduce the number of variables and produce predictive models.
However, resultant models tend to be not intuitive because variables are selected independently
{Arakawa et al., 2011). In this study, the GA is made up by a number of steps. Its main
characteristics of GAs are the following:

Step 1: Genetic coding scheme: First, a vector consisting of zeros and ones is made with the size
corresponding to the number of variables. It 1s denoted a chromosome. The randomly defined zeros
and ones indicate the variables that should be included. Details on the algorithm used can be found
by Leardi et al. (1992) and Leardi (1996). Each zero or one is a gene and a PLSR model made with
the chosen genes is defined as an individual. Each model also called a chromosome, is fully
described by a binary vector “d"d = (d,,...d,, where d, = 0 indicates no explanatory wvariable
selected and d; =1 indicates an explanatory variable selected for PLSR model, for each1=1,..., K,
(K is number of explanatory variables). In this study, the structure of a chromosome is shown in
Fig. 1.

Step 2: Generating the initial population:

* Response to be maximized to explained variance (%)

* Regression method: Partial Least Square Regression

* Population size: 30 chromosomes

+ Average number of variables selected in the chromosomes of the starting population: as number
of latent variables

Step 3: A fitness function to evaluate model performance: Every candidate sclution is
evaluated with respect to a fitness function. The fitness function of the GA is selected as I[COMP
criterion. Bozdogan (2000) introduced ICOMP (IFIM) under the multivariate normal assumption
for the multivariate regression model 1s defined as:

ICOMP (IFIM) 304 viwe = N9 log (210) + nlog|§‘.‘ +1ng+ 2C, (1:"'l (é)),
6 0= 1 Piog | (e e (ex + {tro: Jott (2423 c,,}) /alg+ p))} (4)

i=l

—7(p+q+ 1) log ‘E‘ log ‘(X Xy | = log(2)

and Ta Y, M, V (a,Ta) and A was used instead of X, Y, p,}, q:

_M N 2 5
Via,T)= n]TJflMN;g(Ym (5)

where, N is the number of objects in the evaluation set.
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Fig. 1: The structure of a chromosome

Step 4: To select fitter models: It was computed I[COMP score for each subset model 1n the
population. It was used roulette wheel selection method.

Step 5: Producing offspring models: Population update: one pair of chromoesomes of the existing
population 1s selected by a random (biased) selection, after cross-over and mutation, two offsprings
are obtained and evaluated, each of them enters the population if it 1s better than the worst
chromosome, which 1s discarded (the exceptions to this rule are deseribed in the next two points),
this is the highest possible elitism since the components of the final population are the best
chromosomes found; due to the fact that a new generation is composed by just two chromosomes,
it is better to refer to the number of chromosomes evaluated rather than to the generations.
Cross-over method 1s uniform probability and mutation preobability: Is selected as 1% in GAPLGSE.
General form of algorithm is as shown below:

* Generating simulation data

¢ Begin GA

* Generating chromosomes and pepulation

* Applying dimension reduction PLSR algorithm on data and

* Repeat until ICOMP has minimum value. (Calculating PLSR model using fitness value as
1COMP)

« Calculate R?, ; values for GAPLSR models

* Knd GA

« Calculate R®, ; values for PLSR-NIPALS models

« Calculate R”, ;; values for PLSR-VIP models

DESIGN OF SIMULATION STUDY AND REAL WORLD DATA

The frame work for the simulation models was based on the study of Li et al. (2002),
Naes and Martens (1985). It was extended 1n this study to the situation where there exists multiple
response variables and different number of explanatory variables. In the simulation study, the
multivariate regression models were first developed from which data was generated, and then
GAPLER, PLSR-NIPALS and PLSR-VIP methoeds were applied. The resulting models were then

compared with R? ;. values (Li et al., 2002). The X and Y block data, with sample size N, were

il
generated as:

K
X =) 5| +E
i=1

and:
A A"
Y=2, ZN s T =2 0 PR OV ®)
=l i=1
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where, E and r; were generated from mutually independent normal variables. Generating of X and
Y data matrices are just explained for B5x3. W was generated from a multivariate normal
distribution and generated as (Liet al., 2002), ¥ is a noise matrix and Z was constructed as
z, = rqtf, f, were generated as independent normal variables with zero means and variances (0.5,
0.25 and 0.1). {£} and {n,.} are normalized orthogonal vector series and r, are mutually
independent random wvariables with zero means and variances (15, 7.5 and 3). To carry out
simulations run, it is proceeded on different simulation. The dimensions of explanatory variables
is extended as Nx5, Nx5, Nx8, Nx10 and Nx2, The dimension of response variables matrix, Y, is
chosen Nx3, Nx4 as and sample sizes are selected as N = B0, 100, 250, 500. For each of the
combinations, 100 data sets are generated taking into account the dimension of partial least
squares regression models and sample sizes, so that 16x100 data sets are generated. It is seen that
the Variance Inflation Factor (VIF) values for 5x3 design matrix show that there is
multicollinearity, the VIF wvalues are calculated by Minitab package program. The relative
cumulative variances by the five latent variables for the X and Y blocks, averaged the 100
simulation experiments show that the optimum latent variable number is A* = 3. That is, first three
latent variables capture 100 and 98% of the variance in the X and Y data sets, respectively. This
verifies the theoretical value of the number of latent variables A” = 3. For more information look
the reference (11 ef al., 2002). Then these data sets are applied to GAPLSR, PLSR-NIPALS and
PLSR-VIP methods.

Real world data example: GAPLSR, PLSE-NIPALS and PLSR-VIP methods have bheen tested
considering a real world dataset: The Body Fat Measurement. In this example we determine the
best subset predictors of ¥ = Percent body fat from Siria {1956) equation, using k = 12 predictors,
¥, = Age (years), x, = Weight (Ibs), x, = Height (inches), x, = Neck circumference (cm), x, = Chest,
circumference (em), x; = Abdomen 2 eircumference (cm), x, = Hip eircumference (cm),
%, = Thigh circumference (cm), x, = Knee circumference (ecm), x,, = Ankle circumference (cm),
¥, = Biceps (extended) circumference (cmj, %, = Forearm circumference (cm), x,, = Wrist
circumference (cm) using the GA with ICOMP as the fitness function. The data contains the
estimates of the percentage of body fat determined by underwater weighing and various body
circumference measurements for n = 252 men. This 15 a good example to illustrate the versatility
and utihty of our approach using multiple regression analysis with GA. A variety of popular health
books suggest that the readers assess their health, at least in part, by estimating their percentage
of body fat. In Bailey (1994), for instance, the reader can estimate body fat from tables using their
age and various skin-fold measurements cbtained by using a caliper. Other texts give predictive
equations for body fat using body circumference measurements {e.g., abdominal circumference)
and/or skin-fold measurements. See, for instance, Behnke and Wilmore (1974), Wilmore (1976), or
Katch and McArdle (1977). Percentage of body fat for an individual can be estimated once body
density has been determined. Siria (1956) assume that the body consists of two components-lean
body tissue and fat tissue. Letting:

D = Body Density (g em ™)

D = 1/[(Ala)+(B/b)]

A = Proportion of lean body tissue

B = Proportion of fat tissue (A+B =1)
B = (1/D)y*[abl(a-b)]-[bl(a-b)]

a = Density of lean body tissue (g cm ™)
b = Density of fat tissue (g em™)
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Table 1: Parameters of the GA run for the body fat data

Parameter Value
No. of runs 100
No. of generations 30
Fitness Value ICOMP
Population size 30
Probahility of crossover 0.8
Elitism Yes
Probability of mutation 0.01

Table 2: Summary of fit of best subset model chosen by GAPLSR, PLSR-NIPALS and PLSR-VIP methods

Method No. of latent variables Selected variables R? Agj.
GAPLSR 7 1--34--78-10--13 0.8095
PLSR-NIPALS 7 - 0.7237
PLSR-VIP 6 --34-6789---- 0.6612

Using the estimates a =1.10 g cm ® and b =0.90 g em ™™ (Kateh and MeArdle, 1977) or Wilmore
{1976), we come up with Siri's equation:

Percentage of body fat (i.e., 100xB) = 495/D-450

Volume and hence body density, can be accurately measured a variety of ways. The technique
of underwater weighing computes body volume as the difference between body weight measured
in air and weight measured during water submersion. In other words, body volume is equal to the
loss of weight in water with the appropriate temperature correction for the water's density

{Katch and McArdle, 1977). Using this technique,
Body density = WA/J(WA-WW)/cf-LV]

where, WA = Weight in air (kg), WW = Weight in water (kg) c.f. = Water correction factor (=1 at
59.2 deg F as cne-gram of water occcupies exactly one em™ at this temperature, = .997 at 76-78
deg F), LV = Residual Lung Veolume (liters) (Katch and McArdle, 1977). Other methods of
determining body volume are given in Behnke and Wilmore (1974). Parameters of the GA run for
the body fat data as seen in Table 1.

Summary of fit of best subset model chosen by GAPLSE, PLSE-NIPALS and PLSR-VIP
methods among all possible PLSR models for the body fat data as following in Table 2.

The best model chosen by the GAFPLSR with lowest [COMP (IFIM) value = 1718.091 with the
subset {x; = Age (years), x, = Height (inches), x, = Neck circumference (cm), x, = Hip circumference
(cm), ¥, = Thigh circumference (em), x,, = Ankle circumference {em), x,; = Wrist circumfersnce (cm)}
among all possible models for the body fat data. Our GA application to the problem of optimal
statistical model selection on the body fat data indicates that the GAPLSR can indeed find the best,
model having the biggest R? , value than other methods.

RESULTS

In this study, it has done a simulation study to gain a better understanding of
GAPLSE, PLSE-NIFPALS and PLSR-VIP methods performances for PLSR model selection, it was
run a designed experimental simulation study for see which one has established a model with less
error and have the biggest R® ;; values. Table 3 shows the empirical results,
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Table 3: The empirical results of GAPLSR, PLSR-NIPALS and PLSR-VIP methods

5x3 8x4 10x4 12x4
Method RZ No. of LVs R2 No. of LVs R No. of LVs R No. of LVs
GA
Rzam
50 0.9842 3 0.9714 4 0.9732 5 0.9680 5
100 0.8569 3 0.9713 4 0.9762 5 0.9707 5
250 0.9696 4 0.9714 4 0.9723 5] 0.9805 5]
500 0.9568 4 0.9680 4 0.9748 &) 0.9758 &)
R
50 0.9739 3 0.9770 4 0.9546 5 0.9374 5
100 0.9840 3 0.9742 4 0.9730 5 0.9691 5
250 0.9608 4 0.9714 4 0.9711 5] 0.9739 5]
500 0.9610 4 0.9713 4 0.9751 6 0.9795 6
Re.4
50 0.9640 3 0.9508 4 09779 5] 0.9812 5]
100 0.9702 3 0.9709 4 0.9792 5] 0.9797 5]
250 0.9598 4 0.9700 4 0.9752 5 0.9749 5
500 0.9718 4 0.9697 4 0.9776 6 0.9747 6
Rgadﬂ
50 0.9712 4 0.9615 5 0.9711 5]
100 0.9700 4 0.9725 5 0.9756 5
250 0.9773 4 0.9727 5 0.9742 5
500 0.9753 4 0.9743 &) 0.9792 &)
NIPALS-PLSR
Ry
50 0.9826 3 0.9687 4 0.9708 4 0.9608 4
100 0.8561 3 0.9703 4 0.9737 4 0.9677 4
250 0.9695 3 0.9709 4 0.9713 4 0.89709 4
500 0.89710 3 0.9659 4 0.9776 4 0.9705 4
Rgadﬂ
50 0.9721 3 0.9734 4 0.9499 4 0.9259 4
100 0.9854 3 0.9721 4 0.9705 4 0.9657 4
250 0.9606 3 0.9708 4 0.9705 4 0.9692 4
500 0.9626 3 0.9716 4 0.9754 4 0.9732 4
Rzadjﬁ
50 0.9631 3 0.9446 4 0.9743 4 0.9805 4
100 0.89708 3 0.9709 4 0.9769 4 0.9785 4
250 0.9622 3 0.9694 4 0.9750 4 0.9780 4
500 0.9728 3 0.9699 4 0.9741 4 0.9698 4
R4
50 0.9686 4 0.9579 4 0.9669 4
100 0.9687 4 0.9704 4 0.9723 4
250 0.9771 4 0.9723 4 0.9751 4
500 0.9754 4 0.9761 4 0.9725 4
VIP
Rzam
50 0.9835 3 0.6313 4 0.6722 4 0.7357 4
100 0.9574 3 0.5422 4 0.7045 4 0.75815 4
250 0.9696 3 0.6911 4 0.7331 4 0.7709 4
500 0.9705 3 0.6112 4 0.8797 4 0.9687 4

89



Asian J. Math. Stat., 5 (3): 82-92, 2012

Table 3: Continued

5x3 8x4 10x4 12x4
Method R2.4 No. of LVs R No. of LVs R No. of LiVs R No. of LiVs
Rgadﬂ
50 0.8093 3 0.6589 4 0.9008 4 0.6290 4
100 0.8013 3 0.7325 4 0.6789 4 0.7992 4
250 0.7551 3 0.9111 4 0.8210 4 0.8102 4
500 0.7667 3 0.9151 4 0.7014 4 0.9726 4
Rzadjﬁ
50 0.6312 3 0.8402 4 0.9887 4 0.8086 4
100 0.6321 3 0.8254 4 0.9175 4 0.9758 4
250 0.5241 3 0.8224 4 0.9697 4 0.9026 4
500 0.6987 3 0.9466 4 0.8833 4 0.9699 4
Rzam
50 0.8630 4 0.9580 4 0.9570
100 0.9187 4 0.9368 4 0.9588
250 0.9353 4 0.9663 4 0.9459
500 0.9483 4 0.9455 4 0.9726

All of these methods have different study structures. GAPLSR finds variables according to
minimum value of ICOMP criterion, and then make modeling on these variables. FLSR-INIPALS
works with latent variables. It finds regression coefficients on latent variables and makes regression
modeling on variables. PLSR-VIP also works with latent variables. It finds VIF values by the help
of PLS and then uses explanatory variables which have VIP wvalues bigger than 1 and make
regression modeling on these explanatory variables to caleulate R®,;, PLSR-NIPALS and PLSR-VIP
methods work with same number of latent variables. These numbers equal the A*. The results show
that R®,; values for models with GAPLSR have the biggest values for each of the design matrices
and for each N. This study shows that varable selection with GAPLSE method gives better results
than selection with PLSE-VIP. The PLS-VIP method performed excellently in identifying relevant.
predictors and outperformed the other methods. It was also found that a model with good fitness
performance may not guarantee good variable selection performance. Thus, for the purpoese of
selecting relevant process variables, investigators must be careful when using model performance
such as RMSEP, R-squares, etc. Second, the GAPLSR method was compared with the PLS-VIP and
the PLSRE-NIPALS method. We found an interesting observation that GAPLSR and PLSR-NIPALS
method might be complementary. So, if we use a strategy which combines these two methods for
selecting relevant predictors, better variable selection performance could be achieved. Actually,
Wold et al. (1993) recommend a combination of PLS-VIP and PLS-Beta for variable selection, which
states that both should be small for a variable to be excluded {Chong and Jun, 2005). As a result,
GAPLSE set out PLSE model which have a little more latent variables than PLSE-NIPALS and
PLSR-VIP methods. However, finding of GAPLSR models have the biggest R?  values.
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