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ABSTRACT

A common problem in autoregressive regression models is outliers, which produces undesirable
effects on the least squares estimators. Many regression estimation techniques have been suggested
to deal with this problem. The majority of such techniques are developed from the classical least
squares. Some other robust approaches have been investigated in the regression case both on
theoretical and empirical grounds. However, the behavior of these alternative methods has not
received more attention in the context of time series. In this study, we present a comparative
simulation study for three robust alternatives to the least squares estimator under innovation and
additives outliers. The empirical study indicated that, the Reweighted Least Squares estimator
{(RLS) seems to be very reasonable because of having smaller "total” reot normalized absolute bias
and "total" root normalized variance., The RLS estimator was recommended as worthy robust
alternative to the least squares estimator in the case of autoregressive models with the two kinds
of outliers schemes.

Key words: Robust estimation, autoregressive models, innovation and additive outliers, least

median of squares, trimmed least squares, reweighted least squares

INTRODUCTION

When estimating the parameters of an autoregressive (AR) model, a desirable quality of the
underlying algorithm is to provide protection against gross errors occurring during the collection
or recording of the data. Two distinet kinds of outliers-schemes are considered in regression
literature; namely the innovation ocuthers and the additive outliers. In the Innovation Cutliers (10)
scheme, the AR process is perfectly observed and gross errors are incorporated in the error
distribution which is assumed to be non-normal. While, when the Additive Outliers (AQ) scheme
is preferable, the errors are normally distributed. However, the observations contain an additive
effect not related to the AR process. In both outlier configurations, a heavy-tailed distribution,
frequently assumed to have infinite variance, is involved. Although under the I0-model, the Least
Squares (LLS) estimator is known to be consistent (Yohai and Maronna, 1977), its Mean Squared
Error (MSE) performance in the presence of outliers has been questioned. As a result, robust
GM-estimators are developed by Denby and Martin (1979) and Simpson et al. (1992). In addition,
M-estimates in the case of innovations with finite variance are proposed and studied with its
asymptotic properties by Campbell (1982). Other alternative robust approaches such as the
Functional Least Squares (FLS) estimator (Chambers and Heatheote, 1981), the Least Median of
Squares (LMS) (Rousseeuw, 1984) and the Reweighted Least Squares (RLS) of Rousseeuw and
Leroy (1987) are considered in regression literature. Also, finite-sample properties for most
estimators cited above are reported in regression to the presence of heavy tails error distributions.
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However, similar results for these robust estimators in the context of time series are very limited.
Hence, a finite-sample comparison of the performance of some robust estimators in time series is of
interest.

In this study, we present a comparative simulation study for the LMS and RLS in the case of
AR-models with outliers and in order to assess their performance, diverse sampling situations are
considered. In addition, results corresponding to the Trimmed Least Squares (TLS) estimator of

Ruppert and Carroll (1980) and the LS-estimator are also reported.

ROBUST ESTIMATORS FOR AR-MODELS WITH OUTLIERS
Consider the autoregressive model AR (P) of order P

B
Y= Ea‘jym-l te (1)
]

where, o (&), ¢g,. .., @)’ is a parameter vector and the errors e, are independent and identically
distributed random variables.
Assumed that the stationary condition:

ia]wl %1 (2)
=

for every complex w, with |w| <1 holds.
The three types of simulated noise used on the observed process Z. are deseribed as follows:

* No. outliers: The cbserved process is 7, =y, and the errors e, follows the standard normal
N (0, 1) distribution

+  JO-scheme: The AR-process is again perfectly observed. However, the errors now follow a
heavy-tailed distribution

+ AO-scheme: The observed process is 7, = y,+u, where y, as in the no-outliners case and
independent of u, and the additive effects u, are independent and identically distributed with:

u,~(1-e)F,+eD (3)

where, 0<e<1 is the proportion of contamination, F, denotes a distribution which is generated at
zero and the additive-effect distribution, denoted the additive effect distribution denoted by D is
heavy-tailed.

The aim in this study, is to obtain the estimate & (&, @&,,. .., & )" of the parameter vector aeR?
based on the data Z, (t = 1,. .., T) and the corresponding AR-residuals are:

q:rt(a):thiaJyH,t:p+1,...,T

=

The robust estimators included in the study are:
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* The LMS which minimizes the criterion:
medrf 4)
where "med" denotes the median.

*+ The RLS with corresponding objective function:

Y i (5)

t=p+1
where the final weights:

L

1 iflH<25
w,=1 ¢ (6)
0 otherwise

are computed from the LMS-residuals r, and their final scale estimate is:

(7)

For the definition of the initial weights w", refer to Rousseeuw and Leroy (1987).

It is of interest in regression case to note that, despite the fact that both estimators share the
same (slow) rate of convergence to their asymptotic distribution, the RLS- estimator is far more
efficient than the LMS in samples of size as large as T = 200 (Lucas, 1997). The robustness
properties of the LMS and the RLS estimator in the context of regression can be found by
Rousseeuw and Leroy (1987). The same authors provide an indication on the robustness of these
estimators in the context of time series by employing the LMS and RLS methods in order to fit AR
(1) and AR (2) models. Lucas (1997) showed that, the influence function of the LMS-estimator
under the AO- scheme is bounded, but that the corresponding breakdown point may fall below on
half and confirmed its dependence on the order of the AR-model.

¢+ The q% TLS-estimator with corresponding objective function:
O ®)

where, 1, denotes the ordered squared LS-residuals and the value of h must be determined based

on trimming the data values. For example, the 20% trimmed LTS estimator is defined to minimize
the funection 2,15, Chen (2002) defined h in the range:
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iT:/IS[(sz)H] < h <[(3T+P+1)/4]

and recommended that the breakdown value for the TLS-estimator is T-h/T, when h = [(3T+P+1)/4].
The calculation of TLS estimator is based on a preliminary LS-fit. Then the data yielding the 100 %
largest squared residuals are removed. Thus the TLS-estimator is defined to be the LS- estimator
which corresponds to the reduced data set. In the simulation study, we use q = 0.20, whereas the

ordinary LS-estimator corresponds to the limiting case q =0.

Monte carlo simulation: The model and the sampling situations included in simulation study
are chosen so as to ensure a feasible comparison of the estimators. Specifically, we have
incorporated models of different orders and a wide range of shapes for the IO and AO simulated
noise. The random number generation 1s implemented using the IMSL subroutines computer
package.

More details are provided as follows:

*+ Model and parameter choices: The AR-model (1) with p =2, 3 and «; (-1 08,i=1,2,a
(-1)*0.6!,j=1, 2, 3, are, respectively utilized

]

«  Simulated distributions: The specific shapes of simulated noise under the I0O-scheme

correspond to the following innovation-distribution:

*  The symmetric stable distribution with shape parameter, a, denocted by S (a). The values of,
a, are limited to the interval [0, 2]. The smaller the value of a, the thicker the tails of the
distribution. For a = 1, the Cauchy distribution results, whereas, the normal (a = 2) i1s the
only member of the family with finite variance. In any other case, 5 (a) has finite moments
of order only less than a

+  The A-contaminated normal distribution-CN (A, p, o)-where:

e~(1-A) N (0, 1)+AN (u, 09 (9)

with 0<A<1 and -eo<u<te, 6%»1. This is a standard moedel for thick-tailed distributions possessing a
N (0, 1). The distribution i1s symmetric for all 4 and o when p = 0 but asymmetric otherwise,

+  The Student’s -t, distribution with v degrees of freedom

The three families of distributions considered above have the advantage of containing the
standard normal distribution as a hmiting case (a—2, A—0, v—). This enables to study the behavior
of the estimators as we depart from the N (0,1) model and approach alternative (heavier-tailed)
innovation distributions. When simulating the AO-scheme, the distribution D in Eq. 3 is taken to
belong to any of the three categories mentioned above (in the case of CN (A, p, 0), A = 11is used).

Also, the AR-values y, are adjusted to have variance equal to one. In this case, the necessary
tuning constants are determined by Hamilton (1994) and correspond to the asymptotic variance

of the AR-values, which for p = 3 1s given by:
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o (KK, TR ) +HRE, — oK, (10)
(Ko +Kaou (KK, + K, )= (Ko — K (R K - Kyan)

Where:
K, =0, + oo,

K, =o +o,0,

K,=0, o,
K,=a,-1
Also, if we set al =0, (¢ = ¢ty = 0) in (10), the corresponding variance for p =0 (p = 1) results.

*  Random number generation: The subroutine DRNSTA is used for stable random numbers
whereas, when N (0, 1) variates the subroutine DRNNOR is called. In the CN (4, p, 0) case, the
standard normal variates are transformed to o with probability A simulated by the subroutine
DENUN which produces random numbers in (O, 1). The same subroutine i1s used to simulate
the proportion € in Eq. 3. For t, sampling situations, we have utilized the normal/chi-squared
method, with chi-squared generated by calling DRNGAM-as a special case of the gamma
distribution

In order to reduce dependence of the results on initial process values, a block of 100 variates
is generated according to Eq. 1 and the last p are used as starting values for calculating the
observations involved in the estimation process.

RESULTS OF COMPARISONS

The results presented in this section correspond to 1000 replications. With each replication, the
methods are applied to 100 standardized observations 7, | med |7Z, | For selected cases, we have
generated samples (up to 2000) and our conclusions 1s that the discussion reported below would not,
be changed if a higher number of replications was used. In the left entries of Table (1-3) the "total”
root normalized absolute bias is reported, whereas in the right entries, the "total" root normalized
variance 18 reported, respectively defined by:

bi)
> JlooBs)|

-1

Where:

1 1000

BS.=—— % & —o
i 1000§ mi

and:
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Table 1: 10-Scheme: Total root normalized absolute bias (left entry) and total root normalized variance (right entry) of AR (2)-estimators
for standard normal, symmetric stable distributions with shape a, A-contaminated normal distributions with mean p =0, 2,

5, 10 and standard deviation ¢ and student's t, distribution with v degrees of freedom

L8 LMS RLS TLS
Innovation distribution
S(a a
1.0 0.92 2.24 0.83 0.57 0.65 0.38 0.90 0.53
1.3 1.51 1.50 1.24 1.42 1.19 0.82 1.20 0.86
1.6 1.86 1.43 1.80 2.36 1.83 1.23 1.70 1.27
1.9 2.14 1.51 2.33 3.50 2.32 1.63 2.21 1.66
N (0,1 1.98 1.55 2.06 3.39 2.01 1.81 1.86 1.84
CN (A, u, o) a
A =0.05 2 2.03 1.75 0.93 3.79 1.67 1.54 1.90 1.76
A =010 3 2.13 1.53 1.85 3.10 1.45 1.45 1.83 1.52
A =0.20 5 1.99 1.46 1.22 1.81 0.93 0.96 1.53 0.99
A =030 10 1.80 1.45 0.98 0.75 0.76 0.45 0.82 0.59
CN (A, u, o) a
A =005 2 1.68 1.74 1.23 3.53 1.57 1.65 1.87 1.66
A =010 3 1.57 1.51 1.62 2.86 1.45 1.40 1.55 1.41
A =0.20 5 1.81 1.47 1.26 1.78 1.22 0.92 1.20 0.94
A =030 10 1.57 1.46 0.98 0.75 0.78 0.44 0.69 0.59
CN (A, u, o) a
A =005 2 2.04 1.52 0.47 281 0.87 1.32 1.50 1.36
A =010 3 2.94 1.51 1.12 2.10 1.09 1.07 2.02 1.13
A =0.20 5 3.67 1.48 1.23 1.37 077 072 2.06 0.73
A =0.30 10 2.97 1.50 0.96 0.68 0.76 0.40 1.39 0.61
CN (A, u, o) a
A =005 2 2.46 1.46 077 2.00 0.75 0.91 1.69 1.00
A =010 3 3.50 1.51 0.63 1.32 0.67 0.63 1.99 077
A =0.20 5 4.76 1.49 0.87 0.84 0.76 0.45 2.22 0.60
A =0.30 10 4.70 1.52 0.84 0.54 0.57 0.32 2.45 0.68
t, v
2 1.86 1.39 0.01 1.01 1.32 1.10 1.55 1.02
3 1.63 1.49 1.29 2.46 1.23 1.36 1.33 1.33
1.98 1.66 227 3.25 1.88 1563 192 1.60
12 217 1.68 2.15 3.48 2.00 1.55 2.08 1.69
Ep: 100|VR |
]
Where:
1 oo ;.
VR j=—— 3 . —0
1000 .=

with & denoting the estimate of & (j =1, 2,..., p) in the m™ replication, m =1, 2,. .., 1000. The
"total” root normalized mean-squared error is defined by:

TRMSE = zp:,fIOOMSEJ
j=1
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Table 2: AO-Scheme: Total root normalized absolute hias (left entry) and total root normalized variance (right entry) of AR (3)-estimators
with proportion of contamination £ = 0.01 symmetric stable distributions with shape a, normal distributions with mean p =0,

2, 5, 10 and standard deviation ¢ and student’s t, distribution with v degrees of freedom

LS LMS RLS TLS
Additive effect distribution
S(a a
1.0 65.90 4.03 3.56 7.54 4.36 3.62 6.66 4.20
1.3 577 3.59 3.88 7.57 4.06 3.55 5.40 3.82
1.6 5.02 3.54 3.51 7.57 3.86 3.32 4.77 3.67
1.9 4.50 3.10 3.73 7.53 3.81 3.49 4.77 3.67
N (0, o® a
2 5.64 3.54 2.85 7.55 4.47 3.16 5.02 3.53
3 7.48 3.66 4.19 7.52 5.67 3.46 6.58 3.62
5 10.00 4.00 4.79 7.50 6.52 3.84 8.88 3.92
10 13.20 4.49 5.04 7.62 7.37 4.15 11.90 4.36
N2, %
7.29 3.36 4.07 7.55 5.60 3.62 6.44 3.67
3 8.48 3.60 4.22 7.62 6.03 3.71 7.46 3.68
10.50 4.02 4.89 7.61 6.82 3.83 9.28 3.94
10 13.40 4.36 5.32 7.65 7.47 4.17 12.00 4.28
N (5, a%
11.5 3.55 5.62 7.60 7.48 3.91 10.0 3.66
3 11.6 3.88 5.50 7.55 7.15 3.95 10.1 3.88
5 12.1 4.21 5.29 7.53 7.13 4.03 10.7 4.10
10 13.8 4.33 5.21 7.60 7.37 4.23 123 4.26
N (10, o%
15.6 272 5.51 7.51 8.13 4.43 43.9 3.24
3 15.4 3.09 5.48 7.46 8.04 4.38 13.7 3.44
14.9 3.84 5.17 7.15 7.71 4.32 13.3 3.88
10 14.8 4.34 5.38 7.50 7.42 4.31 13.4 4.26
t
2 5.23 3.55 3.88 7.50 3.88 3.42 5.03 3.72
3 457 3.54 3.82 7.66 3.80 3.21 4.24 3.62
5} 3.73 3.49 2.46 7.61 3.21 3.12 3.62 3.49
12 3.43 3.44 2.49 7.61 2.99 3.03 3.37 3.55
Where:

) .
MSE, =BS, + VR, j=1...p

The following results based on the simulation results.

IO-Scheme (Table 1): The RLS estimator has (overall) the smallest bias, whereas, the LS is the
least reliable method under this criterion, particularly in the presence of considerable skewness
{when a =1.9 or near to 2. In such skewed situations, the LMS-estimator should be preferred but
under symmetric (or nearly symmetric) errors, the LMS and TLS-estimators are comparable with
respect to bias. Also, within the family of symmetric-stable error-distributions, the bias of the
estimators decreases, as the tail-length of the underlying distribution increases. This phenomenon
is in agreement with theoretical results-pertaining to the LS and M-estimators- which indicate
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Table 3: AO-Scheme: Total root normalized absolute bias (left entry) and total root normalized variance (right entry) of AR (3)-estimators
with proportion of contamination € = 0.05 for symmetric stable distributions with shape a, normal distributions with mean

u=0,2 5, 10 and standard deviation ¢ and student's t, distribution with v degrees of freedom

LS LMS RLS TLS
Additive effect distribution
S(a a
1.0 12.10 4.72 6.52 7.81 8.21 4.09 11.50 4.74
1.3 10.40 4.85 6.96 7.57 7.88 3.30 9.88 4.37
1.6 9.09 3.82 6.71 7.57 7.53 3.78 8.63 3.98
1.9 8.01 3.35 6.62 7.49 7.14 3.61 7.66 3.68
N (0, o® o
2 9.04 3.73 7.58 7.44 8.69 3.32 9.29 3.61
3 12.50 3.43 9.01 7.34 10.3 3.94 11.70 3.64
5 15.20 4.20 9.81 7.37 11.7 3.22 14.40 3.48
10 17.30 4.61 10.7 7.15 125 2.68 16.90 2.63
N (g, 0% o
2 12.10 3.37 9.28 7.30 10.3 3.82 11.4 3.55
3 13.50 3.39 9.88 7.33 11.0 3.4 12.8 3.69
5 15.50 4.18 10.4 7.14 12.0 3.14 14.8 3.43
10 17.30 4.62 11.0 7.15 12.8 232 16.9 2.60
N (5, o® o
15.9 2.65 11.4 7.12 13.0 3.99 15.4 2.81
3 16.0 2.75 10.8 7.18 126 4.15 15.5 2.96
5 16.5 275 10.6 7.25 125 4.39 16.0 2.99
10 17.5 212 11.0 7.27 12.8 4.64 17.1 2.47
N (10, ¢® o
2 17.6 2.65 121 6.92 13.5 4.62 17.5 1.81
3 17.7 1.82 11.8 7.01 13.4 4.65 17.5 1.83
5 17.7 1.85 11.5 7.11 13.2 4.67 17.5 2.00
10 17.8 1.76 10.9 7.22 12.7 4.73 17.6 2.00
t, v
2 9.20 3.89 6.47 7.54 731 3.74 8.76 4.01
3 7.96 3.65 6.19 7.51 6.78 3.50 7.49 3.82
5} 6.74 3.65 3.99 7.56 5.86 3.23 6.47 3.67
12 6.23 3.47 4.68 7.55 5.79 3.12 6.02 3.56

consistency rates related to Campbell (1882). Turning to variability we observe that the ELS, also,
is the most preferable method, whereas, the LLS and the LMS are less efficient. However, the last
estimator should be used instead of the LS when asymmetric heavy-tailed innovations are
expected. With the exception of the LS-method, the estimated variance is a decreasing function of
the tail length of the innovation distribution. Thus, previous results (Denby and Martin, 1979)
indicating that heavy-tailed innovation distributions improve the accuracy of certain estimators can
be possibly extended to the robust methods considered here.

To concluded, the presence of considerable skewness increases the bias of the LS-estimator but
leaves the variance practically unaffected. On the contrary the variance (and in many cases the
bias) of the LMS and RLS-estimators is reduced with increasing asymmetry. Furthermore, the LMS
estimator 1s the worst among the estimators considered in terms of estimated TRMSE. However,
when the underlying error-distributions is extreme-tailed, the last estimator is on the whole more
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reliable than the LS-estimator which, naturally, is very efficient (or near) at the standard normal
model. Finally, the TLS and the RLS-estimators are both fairly accurate estimators but the latter
estimator should be preferred since it 1s more bias-robust in the presence of skewness.

AO-Scheme (Table 2-3): In this case, the effect of additive cutliers on the estimated bias increases
with properties of contamination € and it seems impossible to remove. This drastic effect of additive
outliers 1s also obtained by Sejling ef al. (1994) in their simulation study of recursive robust
estimators. Interesting encugh, comparison of biases favors the LMS and the RLS rebust estimators
over all additive-effect distributions. For the former estimator, this behavior 1s obviously connected
with the specific type of outliers as it does not appear neither in the regression context nor in the
10- case. Among the other two less reliable estimators in terms of bias, the TLS has some advantage
under symmetric (or nearly symmetric) additive effects for e = 0.01. This advantage, however
practically, disappears with increasing skewness and proportion of contamination. On the other
hand, the bias of the LMS and RLS estimators is significantly affected by the order of the
AR-model. Henece, we my conjecture that, the breakdown point of these methods 1s reduced
compared to the regression setup and depends on the order p (Denby and Martin, 1979).

Based on efficiency, it is evident however that, the LMS is the least efficient method. The other
three methods appear to be (overall) comparable, since no estimator clearly deminates the others,
with the exception of the RLS which is less efficient with increasing skewness for e>0.05. Although,
the effect of increasing skewness on the bias of the estimators is of considerable size for all methods
{particularly for small o), the LMS and RLS-estimators are comparatively more robust in this
respect. The same effect on the efficiency of all four estimators is not equally significant. It appears
however that, the presence of skewness considerably enhance the efficiency of the LS, the
TLS-estimator for e20.05 but at the same time, as it has already been mentioned, exerts a
somewhat detericrating effect on the variance of the RLS-estimator.

CONCLUSION

Robust autoregressive-model estimators occupy a particularly important area in time - series
methodology. In this paper, we present a simulation study of three robust alternatives to the LS
estimator under innovation and additive outliers. The simulation results indicate that, under the
I10-scheme, the reweighted least squares and the trimmed least squares estimators perform well and
the general conclusion is that in most cases, the estimators are not seriously affected by this type
of outliers. Also, the results suggest that.:

* The consistency rates of the LMS and RLS estimators under stable innovations are a decreasing
function of the shape parameter a of the distribution (possibly of order related to a™)

* The presence of heavy tails improves the asymptotic efficiency of all robust estimators
considered, regardless of whether or not the variance of the innovations exists

Turning to the results under the AO-scheme, we have cbserved that, the effect of additive
outliers on all four estimators considered 1s significant and with the exception of the least median
of squares, of increasing importance as the proportion and the shape of contamination changes. The
least median of squares estimator is competitive in the presence of considerable heavy-tail
contamination, especially, when the additive-effect distribution is asymmetric. Overall, however,
the reweighted least squares appears to be the most efficient method. In addition, the least squares
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estimators under both cutliers schemes and although it 15 quite efficient near the standard normal
model, exhibits less satisfactory performance on the whole. Finally, the findings of this study
indicate that, in the case of auto regression with outliers, the RLS method should be considered as
worthy robust alternative to the least squares method.
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