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ABSTRACT

We investigate the asymptotic finite properties of estimator to ascertain its behaviour from small
to large sample when there is presence of heteroscedasticity. We explore full Bayesian experiments
with Generalized Least Squares estimator incorporating heteroscedastic error structure. Estimates
were obtained through Markov Chain Monte Carlo approach that draws simulated sample of
parameters from joint posterior distribution. Burnin and thinning were chosen as 1000 and 5,
respectively. Bias and Mean Squares Error eriteria were used to evaluate finite properties of the
estimator. We choose the following sample sizes: 25, 50, 100, 200, 500 and 1000. Thus, 10,000
simulations with varying degree of heteroscedasticity were carried out. This 1s subjected to the level
of convergence. Bias and Minimum Mean Squares Error criteria revealed improving performance
asymptotically regardless of the degree of heteroscedasticity. Considering heteroscedastiaity at scale
0.3, from the results, we observed an increase in sample sizes: 25, 50, 100, 200, 500 and 1000 led
to decrease in mean squares error: 0.068436, 0.033896, 0.015071, 0.006772, 0.001935 and 0.00101,
respectively. This implies efficiency of the estimator asymptotically, ditto for all other scales.

Key words: Markov Chain Monte Carlo method, heteroscedasticity, bayesian generalized least
squares, metropolis-hasting algorithm

INTRODUCTION

Bayesian inference 1s an alternative to classical statistical point of view. In a Bayesian
framework, the knowledge about the parameters of the model is described by a probability
distribution.

The generalized least squares estimation does not bring about uncertainty of model estimates
for both error variance and variance of parameters f (Reis ef al., 2005). It has been observed in the
previcus studies that the consequences of heteroscedasticity when it is present in the data and/or
model lead to poor inferences of parameter estimates. Though, the ordinary least squares estimation
may be unbiased but it is no longer efficient. Thus, standard error that uses ordinary least squares
estimates becomes invalid while confidence interval and hypothesis test that make use of the
computed standard error are equally invalid, therefore, estimator lost its properties of efficiency and
consistency (Guermat and Hadri, 1999; Robinson, 1987; White, 1980).

The joint posterior distribution is the product of likelihood and prior which is divided by
normalizing constant, thus, normalizing constant often portend computational intensive. It 1is
usually assumed equal to unity. Meanwhile, Markov Chain Monte Carlo simulation technique that
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draw correlated sample of parameters from the joint posterior distribution with normalizing
constant set to unity would proffer solution to the problem of intensive computation
{Gilks et al., 1996).

The consequences of heteroscedasticity when it is present in the model and/or data, if the
researcher fails to correct for it will lead to substantial bias, inefficiency of the estimator and poor
inferences of parameters estimate. Thus wrong conclusion will be made.

To avoid those problems, we use a fully Bayesian approach, which automatically averages over
our uncertainty in the model parameters. Chtani (1982) opined that the Bayesian estimator for
heteroscedasticity linear model produced best properties using the mean squares error criterion
compare with traditional estimator,

In this study, multiplicative double sided error structure with one component was incorporated.
We extend our study to the multidimensional and more complicated cases and carry out simulation
using MCMC; this study also examined the finite sample properties of the estimator. These are the
gaps, this study decides to fill.

MODEL DESIGNS

Let y = Xp+u with u~N{(0,6.Q), where, Q is a positive definite matrix of order nxn. A case where
u~N(0,06%Q) is a homoscedastic model with constant variance, but when u~N(0,0,%Q) indicates
unequal variances of the diagonal element of nxn matrix of E(uu’) which is regarded as
heteroscedastic error structure:

Y= <A, B, +u @)

Let X denote X, and X, with multiplicative heteroscedasticity using Harvey (1976) which can
be expressed as 0 = 0,(f,+p, X, +f.X,)A, where, A is an unknown parameter which determine the
degree of heteroscedasticity. Adopting a full Bayesian inference, we examine the likelihood
function, prior distribution for the parameters, hyper-parameters in the model, with MCMC
algorithm.

The likelihood function of 0, where 0 = (f§,, B,, B,, A) give the sample vector X, X,=(1, 2, ..., n)
and y = (yy, ¥3, .., ¥,) 18 expressed as:

L(6,0]X.y)= (2r0?) 112, exp{—z—; >0 Iy, - xBf } (2)

Incorporating multiplicative heteroscedastic into our likelihood estimator we derived from the
product of the error density function. Thus our error u is changed to w:

L(8.0|X.y)=(2nc’ ) > 11, |w? exp{— ! > (yi—xﬁ)w*(yi—xﬁ)} (3)

2g° <

To derive the full Bayesian density, we truncate the error density function Eq. 2 with
multinomial distribution density and inverse-gamma distribution.

Marginal posterior density is obtained by integrating the joint posterior density with respect to
each parameter, thus, expert opinion can be adopted by assuming the set of parameters f§,, B, B,
A and o as independent marginal distribution.
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We assumed a prior density n(B,, B,, By, A, 0) = (PP )P Jn(A)n(o). Thus, multivariate
normal distribution is considered for B, while inverse gamma 1s considered for 0 and a uniform
distribution 1s considered for A such that.

T g @
m(0*) e (61 exp(—b, /0* 6% >0 (5)
()= ¢ cis constant (6)

The posterior distribution of 6 = (B, B;, P, A, 0). Considering independence among the
parameters is given by:

By By, By Ao | X, y) oe (2ma®) 7 (7)o

exp {—T;(B—mu)z}ﬂ,ll | w2 \exp{—%z; (v, — xPyw (v, - xB))

(7)

where, a,, b, are the hyper-parameters for the inverse-gamma distribution. Hyper-parameters are
excluded for f-parameters since they would be estimated from the data and may be arbitrarily small
leading to problems which may eventually affect the inferences. Integrating the posterior
(B, A, 0|X, y) with respect to o, thus, we have joint a posterior distribution for (f§, A):

n
2

By By, By, 0| X, y) o= (2m)

exp 3 (B [T | [exp(b, 3 32, 5,3 3, — B} “
Metropolis Hasting Algorithm update is performed on the full conditional distribution of:
of < 10(a, + 1.5 <) 37, (5, ~XBw ), - xB)
This yields the following full conditional density of the parameters f and o:
(B, 11X,y exp {—%(BD —muf}l‘[; v [exp B, (3= xBw (3, —xB) (©)
(B, |7 X,y) < epo(& ~muy’ }H; W [exp(—3 27, (3.~ 5wy, — Xy (10)
(B, |1 X.y) e exp {—%(Bz ~muy }H; W fexpl= B, (5. 5By, —xBy (11)
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7(o|0.X.y)o (@7 expl b, /0 | TT7, [ fexplo (b, +5 B, (- xBw (5, —xBy (12)

TSRS | R LRSS S e (13)

POSTERIOR SIMULATION:MCMC
+«  Simulating B

Let 6_; denote a vector 8 without p parameters, then the MH sampler for f§ starts out with:

BY 167 ~p(B16% .y.X)

where, the superscript r in B denotes the rth simulated B, thus r =0 is the initial value. For =1,...,.R
and R is the number of replications in the MCMC. The conditional probability in the right hand side
denotes a fully conditional posterior pdf of f. We scale A as 0.0, 0.3, 0.5,0.6, 0.9,1 and 2. We chose
0.2 as our initial value of sigma squares. The full conditional distribution of p given 0., is
BI(O~B.%.X) ~ N(B).o™ (XQ7X)

«  Simulating o*

The kernel of an inverse gamma pdf:

IG{n, cQe }
2 2
The initial value of 0-¢* becomes 0©_ 2 = (B¥ in), hence 6 is generated as follows:

O g e®
¥ 6@ 2 10| 2 C L
2 2

where, ¢V=y-Xp", For succeeding simulations we have:

-l
o | s | B ETEET
2 2

DATA GENERATION PROCESSES

In an attempt to investigate the asymptotic finite property of estimator of econometric model
in the presence of heteroscedastic error structure, we adopted Markov Chain Monte Carlo
Experiments. The sample sizes are specified with 6 sets as follow: 25, 50, 100, 200, 500 and 1000,
Harvey (1976) multiplicative heteroscedastic error structure was adopted to truncate linear
econcmetric model.

The scale of A-heteroscedastic error structure is selected as 0.0 homoscedastic, 0.3 less
heteroscedastic, 0.5 and 0.6-moderately heteroscedastic, 0.9-mildly heteroscedastic and 1 and
2-severely heteroscedastic.
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According to Germa and Saez (2000), the distribution of the main regression is assumed to be
moderately heteroscedastic when varianee is proportional to x;, where, x, ranged from 11 to 15-
mesokurtos) and strongly heteroscedastic where %, ranged from 4 to 8-platokurtos.

The error term U is generated based on E(U) =0 and E(UU") = (§,+8,+x,+d.x.)", A1 = 0.0, 0.3, 0.5,
0.6,09,1and 2 d,, 08, and d, are set at -2, 0.25 and 1, respectively. Thereafter, we incorporated U
into the model and the parameters B, B, and f, are set at 10, 1 and 1, respectively to generate
variable y. The number of replications of cur experiment is set at 10,000 with burn-in of 1000
which specified the draws that were discarded to remove the effect of the initial values. The
thinning is set at b to ensure the removal of the effect of autocorrelation in our MCMC simulation.
For the Bayesian experiment, a Metropolis Hasting Algorithm was developed to stmulate our
heteroscedastic based models. This was invoked in [R 2.3.0.0] Statistical software,

RESULTS

In this study, we presented heteroscedastic truncated linear model, considering multiplicative
heteroscedasticity structure. For the parameters obtained through the posterior point estimate of
Metropolis-Hasting Algerithm simulation, we computed bias-measure of consistency-and mean
squared error eriterion-measure of efficiency. Hyper-parameter were arbitrarily chosen for o?. The
levels of convergence of the chains were monitored using the method proposed by Gelman and
Rubin (1992) and graphic analysis was carried out using coda package in R package. Multivariate
normal and inverse gamma distributions were chosen as priors for parameter estimates and ¢?,
respectively.

Performances of the GLS heteroscedastic linear model on the basis of bias criterion:
Table 1 revealed the outcome of our estimation of GLS heteroscedastic linear model. The Bias for §,
at A =0 degree of heteroscedasticity decreases algebraically, at sample size 25 the bias 1s 0.02929,
it decreases to 0.02457 as the sample size increases to 50, it equally decreases to 0.001261 when
we increased the sample size to 100, the sample size 200 appeared to be turning point where the
bias increases to 0.031881, as we increased the sample size to 500, the bias decreases algebraically
to 0.010611, it was followed by a decrease in bias of -0.0293 as we increased the sample size to
1000. For all the other scales of heteroscedasticity, the bias for g, where, A equals 0.3, 0.5, 0.6, 0.9,
1 and 2 have the same characteristics as A = 0. Thus, there is consistency for p, . The bias for B, is
negative and absolutely decreases algebraically as sample size increases. The Bias for p, at A =0.3
degree of heteroscedasticity absolutely decreases algebraically, at sample size 25 the bias 1s 0.00909,
it decreases to 0.0039 as the sample size increases to B0, it decreases to 0.00075 when we increased
the sample size to 100, the sample size 200 appeared to be turning point where the bias increases
absolutely to 0.00187, as we increased the sample size to 500, the bias decreases algebraically to
0.00111, 1t was followed by an increase in bias of 0.001716 as we increased the sample size to 1000,
For all the other scales of heteroscedastieity, the bias for f, where 4 equals 0.0, 0.5, 0.6,0.9, 1 and
2 have the same characteristics as 4 = 0.3, Thus, there is consistency for p . The bias for p, is
interchangeable, it increases and decreases algebraically as sample size increases. The Bias forp,
at A =0.9 degree of heteroscedasticity absclutely decreases algebraically, at sample size 25 the bias
1s 0.00517, 1t decreases to 0.00014 as the sample size increases to 50, the sample size 100 appeared
to be turning point where the bias increases to 0.002178, as we increased the sample size to 200,
the bias decreases algebraically to 0.00309, the bias decreases to 0.00161 as the sample size
increases to H00, it was followed by absolute increase, the bias 1s 0.00998 as we increased the
sample size to 1000. I'or all the other scales of heteroseedasticity, the bias for §, where A equals
0.0,0.3, 0.5, 0.6, 1 and 2 have the same characteristics as 4 =0.9. Thus, there is consistency for §, .
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Tahble 1: Bias of posterior estimation of heteroscedastic linear model

Scales A

Samples

Bias criterion

i i B,
0.0 a5 0.02929 0.00286 0.000844
50 0.024579 0.00176 -0.00015
100 0.001261 -0.00056 0.00093
200 0.031889 -0.00187 -0.00172
500 0.010511 -0.00109 0.000511
1000 -0.02953 0.003151 -0.00147
03 a5 0.089236 -0.00909 0.003074
50 0.052681 -0.0039 -5.8TE-05
100 0.001848 0.00075 0.001201
200 0.031889 -0.00187 -0.00172
500 0.009018 -0.00111 0.000788
1000 0.00877 0.001716 -0.00493
05 a5 0.108772 0.01104 0.003661
50 0.063666 0.00471 -7.85R-05
100 0.002254 -0.00092 0.001465
200 0.038697 -0.00227 -0.00209
500 0.010536 -0.00129 0.000924
1000 0.010221 0.001999 -0.00577
0.6 a5 0.120072 0.01216 0.003993
50 0.06998 0.00518 -0.08F-05
100 0.002488 -0.00101 0.001618
200 0.042621 -0.00251 -0.0023
500 0.011723 -0.00144 0.001031
1000 0.011355 0.002221 -0.00642
0.9 a5 0.161422 0.01626 0.00517
50 0.002877 0.00687 -0.00014
100 0.003344 0.00135 0.002178
200 0.056914 0.00336 -0.00309
500 0.018118 0.00223 0.00161
1000 0.017452 0.003415 -0.00998
1 a5 0.178124 0.0179 0.005632
50 0.102047 0.00755 -0.00016
100 0.00369 0.00149 0.002405
200 0.062661 -0.00371 -0.00341
500 0.021757 -0.00268 0.001944
1000 0.020919 0.004094 -0.01203
2 a5 0.474372 0.04673 0.012949
50 0.2605 0.01925 -0.00067
100 0.009761 -0.00391 0.006475
200 0.163077 -0.00971 -0.00912
500 0.370433 -0.04635 0.036835
1000 0.358685 0.071985 -0.22717
Considering the degree of heteroscedasticity, we observed that the bias for increases

algebraically as the scale of heteroscedasticity increases, with sample size 25 at A = 0 the bias is
0.02929 which increases to 0.089236 as A increases to 0.3, as we increased A to 0.5 so also the bias
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increases to 0.108772, the bias increases to 0.120072 when A increases to 0.6, thus the bias
increases to 0.161422 as A increases to 0.9, we cbserved that the bias increases to 0.178124 as we
increased A to 1, we recorded an increased bias of 0.474372 when we increased A to 2. Thus, we
have the same pattern for all other sample sizes. The bias for f is negative and absclutely
increases algebraically as the scale of heteroscedasticity increases, with sample size 50 at A =0 the
bias is 0.00176 which increases to 0.0039 as the A increases te 0.3, as we increased A to 0.5 50 also
the bias increases to 0.00471, the bias increases to 0.00518 when A increases to 0.6, thus, the bias
increases to 0.00687 as A increases to 0.9, we cbserved that the bias increases to 0.00755 as we
increased A to 1, we recorded an increased bias of 0.01925 when we increased A to 2. Thus, we have
the same pattern for all other sample sizes. The bias for g, absolutely increases algebraically as the
scale of heteroscedasticity increases, with sample size 100 at A = 0 the bias 1s 0.00056 which
increases to 0.0012101 as XA increases to 0.3, as we increased A to 0.5 so also the bias increases to
0.001465, the bias increases to 0.001618 when A increases to 0.6, thus the bias increases to
0.002178 as A increases to 0.9, we observed that the bias increases to 0.002405 as we increased A
to 1, we recorded an increased bias of 0.006475 when we increased A to 2. Thus, we have the same
pattern for all other sample sizes.

Performances of the BGLS heteroscedastic linear model on the basis of mean squares
error criterion: Table 2 revealed the mean squared error (mse) criterion, the mean squares error
for p, decreases algebraically as the sample size increases irrespective of the scale of
heteroscedasticity. The mse for , at A =0 degree of heteroscedasticity decreases as the sample size
increases, at sample size 25 the mse is 1.272, it decreases to 1.3202 as the sample size increases to
50, it decreases to 1.2979 when we increased the sample size to 100, it decreases to 1.2947 as the
sample size increases to 200, as we increased the sample size to 500, the mse decreases to 0.3289,
likewise we observed decrease of 0.15224 in mse as the sample size increases to 1000, For all the
other scales of heteroscedasticity, the mse for g, where, A equals 0.3, 0.5, 0.6, 0.9, 1 and 2 have the
same characteristics as A = 0. Thus, there is efficiency for §, . The mse for § at A =0.3 degree of
heteroscedasticity decreases as the sample size increases, at sample size 25 the mse is 0.0684, it
decreases to 0.03389 as the sample size increases to 50, it decreases to 0.01507 when we increased
the sample size to 100, it decreases to 0.0068772 as the sample size increases to 200, as we increased
the sample size to 500, the mse decreases to 0.001935, likewise we observed decrease of 0.00101 in
mse as the sample size increases to 1000, For all the other scales of heteroscedasticity, the mse for
f, where A equals 0.0, 0.5, 0.6, 0.9, 1 and 2 have the same characteristics as A = 0.3. Thus, there
is efficiency for f . The mse for p, at A = 0.6 degree of heteroscedasticity decreases as the sample
size increases, at sample size 25 the mse 1s 0.128, it decreases to 0.04727 as the sample size
increases to B0, it decreases to 0.02337 when we increased the sample size to 100, it decreases to
0.01274 as the sample size increases to 200, as we increased the sample size to BOO, the mse
decreases to 0.002859, thus we observed decrease of 0.00133 in mse as the sample size increases
to 1000. For all the other scales of heteroscedaticity, the mse for g, where A equals 0.0,0.3,0.5, 0.9,
1 and 2 have the same characteristics as 2 = 0.6. Thus, there is efficiency for p, . Moreover, the
mean squares error for all parameters have asymptotic efficiency since their mse decreases as the
sample size increases,

Considering the degree of heteroscedasticity, we observed that the mean squares error (mse)
for p, increases algebraically as the scale of heteroscedasticity increases, with sample size 25 at
A =0the mseis 1.272 which increases to 11.7418 as A increases to 0.3, as we increased A to 0.5 s0
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Tahle 2: Mean squared error criterion of posterior estimation

Mean squared errors

Scale A Samples E,D B EE
0.0 25 1.272007 0.006828 0.006972
50 1.320185 0.00715 0.006918
100 1.297923 0.007015 0.007025
200 1.294664 0.006772 0.007068
500 0.328895 0.001629 0.001401
1000 0.152244 0.000859 0.000662
0.3 25 11.74183 0.068436 0.070956
50 6.052991 0.033896 0.026202
100 2.002254 0.015071 0.012969
200 1.294664 0.006772 0.007068
500 0.380045 0.001935 0.001685
1000 0.173 0.00101 0.000782
0.5 25 17.4542 0101115 0.105142
50 8.842747 0.049496 0.038832
100 4.413156 0.02236 0.019202
200 1.906254 0.010019 0.010467
500 0.530549 0.00265 0.002305
1000 0.235836 0.001381 0.001071
0.6 25 21.27469 0.122864 0.128
50 10.68487 0.059791 0.047277
100 5.358008 0.027226 0.023366
200 2312379 0.012181 0.012738
500 0.656467 0.003287 0.002859
1000 0.20174 0.001712 0.001329
0.9 25 38.48439 0.220104 0.231033
50 18.82841 0.105264 0.085348
100 9578117 0.049077 0.042114
200 4.122471 0.021858 0.022958
500 1.564625 0.00791 0.006904
1000 0.694781 0.004114 0.003213
1 25 46.87465 0.267191 0.281332
50 22.73329 0.127049 0.103933
100 11.62012 0.059698 0.051256
200 4.996642 0.026547 0.027938
500 2.254817 0.011442 0.010022
1000 1.001007 0.005948 0.004664
2 25 333.7871 1.833107 2.024595
50 148.1523 0.823949 0.746992
100 79.44869 0417739 0.366433
200 33.80501 0.182878 0.19899
500 656.4161 3.424931 3.701633
1000 291.0903 1.80265 1.681897

also the mse increases to 17.454, the mse increases to 21.2747 when A increases to 0.8, thus the mse
increases to 38,4843 as A increases to 0.9, we cbserved that the mse increases to 46.8746 as we
increased A to 1, we recorded an increase mse of 333.787 when we increased A to 2. Thus, we have
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the same pattern for all other sample sizes. The mse for f§ increases algebraically as the scale of
heteroscedasticity increases, with sample size 50 at A = 0 the mse is 0.00715 which increases to
0.03389 as A increases to 0.3, as we increased A to 0.5 s0 also the mse increases to 0.04949, the mse
increases to 0.05979 when A increases to 0.6, thus, the mse increases to 0.10526 as A increases to
0.9, we observed that the mse increases to 0.12705 as we increased A to 1, we recorded an increase
mse of 0.82395 when we increased A to 2. Thus, we have the same pattern for all other sample
sizes. The mse for f§, increases algebraically as the scale of heteroscedasticity increases, with sample
size 100 at A the mse is 0.00703 which increases to 0.01297 as A increases to 0.3, as we increased
A to 0.5 so also the mse increases to 0.0192, the mse increases to 0.02337 when A increases to 0.6,
thus, the mse increases to 0.04211 as A increases to 0.9, we observed that the mse increases to
0.05125 as we increased A to 1, we recorded an increase mse of 0.3664 when we increased A to 2.
Thus, we have the same pattern for all other sample sizes.

CONCLUSION

In this study, we have presented a simple way of modeling and estimating heteroscedastic linear
model under simulation approach (MCMC). We observed that modeling heteroscedasticity in a full
Bayesian improve the precision of the inferences of the parameter estimates. We conclude that
asymptotically there exist consistency and efficiency in the estimation. Our approach can be applied
to further studies in the area of simultanecus equation and other econometric models.
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