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ABSTRACT

The aim of this study is to give upper bounds for ruin probabilities of generalized risk processes
under interest force with homogenous Markov chain claims. Generalized Lundberg inequalities for
ruin probabilities of these processes are derived by the martingale approach.
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INTRODUCTION

Modern insurance businesses allow insurers to invest their wealth into financial assets. Since
a large part of the surplus of insurance businesses comes from investment income, actuaries have
been studying ruin problems under risk models with interest force. For example, Sundt and Teugels
{1995, 1997 studied the effects of constant rate on the ruin probability under the compound
Poisson risk model. Yang (1999) established both exponential and non-exponential upper bounds
for ruin probabilities in a risk model with constant interest force and independent premiums and
claims. Cai (2002a, b) investigated the ruin probabilities in two risk models, with independent
premiums and claims and used a first-order autoregressive process to model the rates of in interest.
Cai and Dickson (2004) obtained Lundberg inequalities for ruin probabilities in two discrete-time
risk process with a Markov chain interest model and independent premiums and claims.

In this study, we study the models considered by Cai and Dickson (2004} to the case
homogenous markov chain claims, independent rates of interest and independent premiums. The
main difference between the model in our study and the one in Cai and Dickson (2004) is that
claims 1n our model are assumed to follow homogeneous Markov chains. Generalized Lundberg
inequalities for ruin probabilities of these processes are derived by the martingale approach.

In this study, we study two style of premium collections. On one hand of the premiums are

collected at the beging of each period then the surplus process {UJ '}, with initial surplus u can

nxl

be written as:

UY =U® (14 L)+ X, Y, 1)
which can be rearranged as:
US =u] [+ 1)+ (X, - Y[ [a+1) (2
k=1 k=1 j=k+l
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On the other hand, if the premiums are collected at the end of each period, then the surplus

process {U @} with initial surplus u can be written as:
U = U X)), ®

which 1s equivalent to:

U :u.ﬁ(l+Ik)+£n:|:xk(1+1k)_Yk]ﬁ[ (I+1) (4)

j=k+1

where, throughout this study, we denote:

and:

if a=b.
We assume that:

Assumption 1: U® =T "® =u>0

Assumption 2: X = {X }  is sequence of independent and identically distributed non-negative
continuecus random variables with the same distribution function F(x) = P(X,<x)

Assumption 3: {[.} ., is sequence of independent and identically distributed non-negative
continuous random variables with the same distribution function G{t) = P(I <t)

Assumption 4: {Y } ,is a homogeneous Markov chain such that for any n, Y, takes values in a
countable set of non-negative numbers E = {y,, v5,..., v,,... t with Y, = y,€E and.:

;= P[Ym” =y Y = yi}(m eENLyLy; B
Where:

0<p,<L,>p,=1

i=1

Agssumption 5: X, Y and I are assumed to be independent

We define the finite time and ultimate ruin probabilities in model (1) with assumption 1 to

assumption 5, respectively, by:
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n

y(u,y) = P{U(Ufj) < 0)

k=1

UY =uy, —y,J (5)

W', y,) = limy®u,y,) = P{U(UEP <0)

k=1

y} ®)

Similarly, we define the finite time and ultimate ruin probabilities in model (3) with assumption
1 to assumption 5, respectively, by:

w(u,y) = P{U(Uf) <0)

k=1

USZ) :qun _Yij (7)

W@y = limy®uy,) = P{Uwff) <0)UP =uY,= yJ ®

k=1

In this study, we derive probability inequalities for ¢®(u, y) and ¥*®(u, y,) by the martingale
approach,

UPPER BOUNDS FOR PROBABILITY BY THE MARTINGALE APPROACH
To establish probability inequalities for ruin probabilities of model (1), we first proof the

following Lemma.

Lemma 1: Let model (1) satisfy assumptions 1 to 5.
Any yek, if:

M =max{y; yeE}<+=

E(Y,

Y, =)< E(X,) and P((Yl ~X)A+1)7 >0

YD:y1)>0 (9)

then, there exists a unique positive constant R, satisfying:

E (eRi[Yl_X1)(1+Il)_l

Y, :yl):l (10)

Proof: Define:

Y, = yi} —Lte (0,+ =)

£ = Bt

We have:

£(0) = h(t)1
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Where:
e rere D)

hy(t) = E{e!0miei |y =y ) = zp j j e 7 f(x).g(y)dxdy

With:
x)=Fx), gv)=CGF)
With:
nelN* = N0}

Then:

oo tlyjox)
Fee +opte| V.- X % i« Ho et by,
2ol . L;J o HGos)dxdy < TR ], yie T e()dxdy

T
=3 puy‘J‘etyj <M" -e™vte(o,+ x)
o1

This implies that hit) has n-th derivative function on (0, +«) with neN*, Thus, f(t) has n-th
derivative function on (0, +=) with neN* and.:

B0 =B{(Y, ) 1y e ey, -y
f;“(t) _ E%[(Yl _ Xl)(l"r 11)71}2 et(xf'lflsil)(l-t-ll)i1 Yu — yl} = 0
Which implies that:
fi(t) 1s a convex function with £(0) =0 (11)
and:
£(0)= E{(Y1 X+ 1)7y, = yi} <E(Y,|Y,=vy,)- E(X)<0 (12)

By P{(Y ,-X){(1+I))7'>0|Y, = y)>0, we can find some constant >0 such that:
P((Y -X) (1+1)>0>0| Y, = y>0

Then, we can get that.

£(H=E {e“YrXIXW“

Y, = yl}fl = E{e”"xlx“ll)_l ‘YD = yﬁ.l ~1= etf’.P({(Y1 SX)A+1)T =3

§ {(YI’X1)(1+11)_1>5‘Y°=y1}

Y, =y}
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This implies that.:

lim £,(t) = +e0 (13)

From (11-13) there exists a unique positive constant R, satisfying (10).

This completes the proof .
Let:

R, = mm{& ) :E(eRJ(YrXﬂ“*‘”* ‘YD = yi) ~1(y, e )

J

Use Lemma 1, we now obtain a probability inequality for y*(u, y,) by the martingale approach.

Theorem 1: If model (1) satisfies assumptions 1 to 5, M = max{y,yv.cE}<te and (9) then for any u>0

and y,ek:
W,y e (14)
Proof: Consider the process {U_} given by (2), we let:
n n ]
g N (RTRANS S e | (e )
- 1 [

and S = g R Thus, we have:

n+l
Ry [ T )] [T it
] el

n+1

= 8%
With any n>1:

n+l FE S EEE e

n+l
o R Fna = T ) JO+L)
=5,Ele =

E(s

XXX, Y, Yy Y, 12,...,1n)

X1>X2="'>Xn>Y1>YZ"">Yn>Il=IZ>"'>InJ

o fRo(er‘r;m)(1+1ml)'lli[(ml)'l
=5,Ele i

K,Yz,...,Yn,II,IZ,...,In}

From:
o< Ja+Ip™ <1
t=1

and Jensen’s inequality implies:
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E(s

n+l

b.O1 G o 1 AN O R R

RN T

e
- SS)E(efRD o= d14 L) )1:1[ o

Y, Y, Y, 01,1

15> Lzsees Lysdysdysensdy

In addition:

-1 -1
E(efRu CA AT Yl,Yg,---,Yn,InIg,---aln) - E(e—Ru(&ﬂ—Ym)(1+1ml>

v ) _ E(e—Ru(xl—Yl)(ml)" ‘Y ): 1

Thus, we have:

D 1% X 0 Y, Y, YL e T,

B(sy

1)=sy

Hence, {5V, n =1, 2... }is a supermartingale with respect to the o-filtration:
Sn(lj = O{XU"' 1 Xn: Yl)"'Yn) 11:"' 1 In}
Define T, = min {n: V_ P<0|U,Y =u, Y, =y}, with V_Vis given by (15). Hence, T,V is a stopping

time and nAT,"” = min(n, T,") is a finite stopping time.
Therefore, from the optional stopping theorem for supermartingales, we have:

(L (1 _ ,—FRgu
E[Smﬁn J <B(SP)=e
This implies that:

R “RVh
o e >E(SMT‘(1,)>E(SS‘1T‘U,.1(TP,<B))—E(S%JIJ_I(T‘(IJ<"))—E[e b Lo (18)

From V{ <0 then (18) becomes:

e Rt » E(l =P(T® <) (1n

(T 2n) )

In addition:

W'y, = P[U(US> <0)UY =u,Y, = yij
k=1

(18)
= P{U(Vy <QUY =u,Y, = yl} =P(T" <n)

k=1

Combining (17) and (18) imply that.

Wiy <e ™ (19)
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Thus, (14) follows by letting n-e in (19).

Similarly, we have Lemma 2.

Lemma 2: Assume that model (3) satisfies assumptions 1 to 5 and E(X \<+=(k =1, 2).

Any yek, if:

E|Y,

Y, =y, |<EX)
and:

P(Y,0+1)" =X, >0

Y, =y)>0

Then, there exists a unique positive constant R, satisfying:

E{em[mml)“—xl]

YD:yljzl

Proof: Define:

() -3 Yo — yil, Ite (0,+ OO)

f(H=E {et[ |

We have:

GO =E{ Y, =y L E(e™)-1=g, 00 hO -1

From Y, is discrete random variables and it takes values in K = {y,, v,,...

b 4w T
2.0 =E{ Wy, =y }= Y p, [ atydy
i=1 0
with g(y) = G'(y).
We have:
+co & +eo
[ eelyidy < [™gly)dy =e”
0 0
and:

+o . e v o i
| [liy} gy < [ () emewidy=(y, )¢

0

, Yo 3 then:

(20)

(21)
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This implies that g,(t) has n-th derivative function on (0, +e) (any neN* = N {0}).
In addition:

h(ty = E(e"xl ) = fe-“f(x)dx
with f(x) = F'(x) satisfying:
hit) = fe"xf(x)dx < ;Ff(x)dx =1
and:
kae'mf(x)dx < kaf(x)dx =E(X[ )< +o(k=12)

This implies that h(t) has n-th derivative function on (0, +=) with n =1, 2. Thus, fiit) has n-th

derivative function on (0, +») with n =1, 2 and:

FO=E{(Y.a 1" - X, e ]y, =y |
fl"(t) _ E{(Y-l(l + 11)71 _ X1)2 et(Yl(1+I1)_l’X1) YD — yl} =0
Which implies that.
fit) is a convex function with £(0) =0 (22)
and:
EO=E{(Ya+ 1) -X)|Y, =y} <E(Y[Y, =y, )~ E() <0 (23)

By P((Y,(1+1)*-X)>0|Y, = y)>0, we can find some constant >0 such that:
P((Y (1+])7"-X)>8>0|Y, = y>0
Then, we can get that:

)= Bferonn .

Y, = Yl} 1 E{emfl G-

Y, :yl}.l{

(%0105, )5 47, -5}

> eta.P({(Yl(lJr " X)>8

YD:yl}fl
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Imply:
lim £,(t) = +e0 (24)

From (22-24) there exists a unique positive constant R, satisfying (21).
This completes the proof.
Let:

R. = min%R. -0 (R0
=0

Y, :yi):l(yl eE)}

Use Lemma 2 we now obtain a probability inequality for ' {u, y)) by the martingale approach.

Theorem 2: If model (3) satisfies assumptions 1 to b, B ®<+e(k =1, 2) and (20} then for any u>0
and y,eRE:

W(Z)(U,yi) < e—ﬁgu (2 5)

Proof: Consider the process {U_ @} given by (4), we let:

=1 i=1

VO =UPTTa 1) =us S, a+ -, [a+ 1) (26)

and 5@ —e ¥ | Thus, we have:

“Fo [y =V (e L) 7 T 107
QB

n+1 = SEJZ)e
with any nz1:

IS

n+1

X, X X Yoo Voo Vo [ L, )

5 Laseey

] o (= By (0 7O T 017
=S8UE| e XX XL YL Y YL LT

n? 12 tgeees Ipsdyetasesdy

] o (= By (0 7O T 017
=S8UE| e Y. Y, Y, 0T

n>71?

I

g3eesly

From:

o<[Ja+1y " <1
t=1

and Jensen’s inequality implies:
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E(s?

n+l

XX, XY, Y, YT

K X ¥ Vo Vo L LT, |

_ = ﬁ(m)-l
gSE]Z)E(e_RD(Xn-H_Yx\+1(1+InH)1)‘Y Y Y 1.1 I )(:1 '

13 Lagseees Lpsdyslasdy
In addition:

FEREEEIR S'ER VPR UESEPPE

E(e—iu(&r\’nﬂ(lﬂm'l) VLY, YL L ):E(efﬁu(xmth+1(1+1“+1)">

_ R (3 -1+ Y
Yn)fE(e e

Yo):l
Thus, we have:

M seees Lo lynlonndy

E(s

XX X Y Yo YL L 89

Hence, {5.%, n=1, 2,...} is a supermartingale with respect to the o-filtration:
s’sn@) = U{XU"'an Yl)"' 3 YnJ Ils"') In}
Define T,” = min{n: V @<0|U.*=u, Y .=y} with V @ is given by (15). Hence, T ©is a stopping

time and nAT,® = min(n, T,?) is a finite stopping time.
Therefore, from the optional stopping theorem for supermartingales, we have:

E[S@; . j <E(§P)=e ™

This implies that:

2

— -R,VE)
S Gy S TS CaR 0

From V& <0 then (27) becomes:

2Bl ) =PI <0) (28)

In addition:

s

Y,y = P[ < 0)‘US) =uY, = yiJ

=
Il

1

(29)
- P[O( Vi < 0)‘U§2) =1,Y, = YiJ— P(T <)
k=1

Combining (28) and (29) imply that:

10
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wPu,y) e (30)

Thus, (30) follows by letting n-e in (25).
This completes the proof.

CONCLUSION
Our main results in this study, Theorem 1 and Theorem 2 give upper bounds for Y, “(u, y,) and
P, “(u, y,) by the martingale approach.
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