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ABSTRACT

In this study, we propose some new fuzzy directed divergence measure and study its particular
cases. We also establish some fuzzy coding theorems. Some of the known results are the particular
cases of our proposed divergence measure.,
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INTRODUCTION

Classical information theoretic divergence measures have witnessed the need to study them.
Kullback and Leibler (1951) first studied the measure of divergence. Jaynes (1957) introduced the
Principle of Maxmum Entropy (PME) and emphasized that “choose a distribution which is
consistent to with the information available and is uniform as possible”. For implementation of this
consideration another advance was needed in the form of a measure of nearness of two probability
distribution and it was already provided by Kullback Leibler (1951) in the form of:

I(P,Q)=ip110g% (1)
i=1

If the distribution @ is uniform. This becomes:

I(P,Q):ipllogp1+logn (2)

i=1

where, P, QeT | and:

T, ={P=(p.p,. .. P, ). >0, L., p,=1}; Vi=1,2,..n,n =2
Since (Shannon, 1948) Entropy:
HP) == pilogp, (3)

was already available in the literature, so maximizing H is equivalent to minimizing I (P, @). This
is one of the interpretations of PME.

12



Asian J. Math. Stat., 7 (1): 12-20, 2014

Analyzing Eq. 1 in the following way:
IP.Q) =2 (plogp, —p,logq;) (4)
The second term present in Eq. 4 is called the Kerridge Inaccuracy which is:
=-2.. blogg, ®

Considering (Kerridge, 1961) inaccuracy, we can interpret (Kullback and Leibler, 1951)
measure of divergence as:

IP.Q=>" P log%

1.8,
= Difference of Kerridge inaccuracy and Shannon’s entropy:
=2, {plogg, —(-p,logp,)) (6)

Since [ (P, @) provides a measure of nearness of P from Q. Take the case of Reliability Theory; here
we can consider how much the information is reliable. Because the distribution is the revised
distribution/strategies to achieve the goalfobjectiveftarget with certain constraints, so optimization
theory takes the birth, which 1s the need of every one.

Hence whenever we come across divergence measures, we are interested to minimize the
divergence to make the information available, reliable. Every walk of life 1s governed with the
reliability of information under certain constraints.

Analogous to information theoretic approach, when we arrive at fuzzy sets or fuzziness, we
need to study fuzzy divergence measures. As presently, the vast applications of fuzzy information
in life and social sciences, interpretational communication, Engineering , Fuzzy Aircraft Control,
Medicine, Management. and decision making, Computer Sciences, Pattern Recognition and
Clustering. Hence the wide applications motivate us to consider Divergence Measures for fuzzy set,
theory to minimize or maximize or optimize the fuzziness.

Let A ={x: p(x), ¥i=1,2, ..,n}and B = {x; ps (x), ¥i = 1, 2, ..., n} where, 0<p,(x)<1 and
O<pg(x)<1, be two fuzzy sets. The fuzzy divergence corresponding to Kullback and Leibler (1951)
has been defined by Bhandari and Pal (1993) as:

5" 1, (x;) _ 1-p (%) 7
D(AB)=Y." [uA(XI)loguB o (Xl)} (7)

The fundamental properties of fuzzy divergence are as follows:

« Non-negativity, i.e., D (A|B)=0
« D{AIBY=0,ifA=B
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« D (A|B)is a convex funection in (0, 1)
+ D (A|B) should not change, when p,(x}) is changed to 1-p,(x) and pg(x) to 1-pg(x)

Bhandari and Pal (1993) have established some properties such as:

« DAIB) =TAIBH+I (BJA)
Where:

T(AIB)=[, (x,)— pip (x,)] log e %)
PalX;)

« D{AUBJANR) =D (A|B)

« D{AUB|C< D (A|C)H+D (B|C)

« D{AIB):= D (AUB|A)

« D {A|B)is maximum if B is the farthest non-fuzzy set of A

Havrda and Charvat (1967) has given the measure of directed divergence as:

D, (P.Q)=

L 5 G pra -1 (8)

ao

Corresponding to Eq. 8, the average code word length can be taken as:

1
afo—1)

L, (P.Q)- (3" g, DS ) )

Corresponding to Kq. 8, the fuzzy measure of directed divergence between two fuzzy sets pn,(x,)
and pg(x) can taken as:

_ 1
= a{o—1)

(Z?=1{(“A(X1)u+ (lqu(Xl))D‘)(uB (%)% + (I*MB(XI))Q)}D(MM _ 1)

And its corresponding fuzzy average code word length as:

1 (ZL{(uA(xl P (1) e (0% + (1 ms (x, ))a)}Dwm - 1)

“ a(o—1)

Remark:
« Asg—l,Eq 8tendsto Eq. 1

* As a—landq, =1, Kq. 8tends to Eq. 3
«  Asa—l Eq. 9 tends to average codeword length given as:

L=3 pan (10)
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« Asw—1and g =1, Eqg. 9 tends to average codeword length corresponding to Shannon's entropy

given as:

L=>" pn, (11)

NOISELESS DIRECTED DIVERGENCE CODING THEOREMS
Theorem 1: For all uniquely decipherable codes:

D <L (12)

o o

Where:

_ 1
(-1

(ZLI{(”A(XI P (1) e (0% + (1 m5 (x, ))u)}D(“‘l)‘“ - 1)

Proof: By Holders inequality, we have:

1 1

z‘tlx]y‘ Z(Zile)p (z;yf‘):‘ LO<p<lg<0or0<q=<lp<0 (13)
Set.:
o
X, =[£{u, (g (x)) [ D™

L
t

A TNCANTREN)]
and:
p=—t=0<p< 1,q:ti—1:q< 0
Thus Eq. 13 becomes:

> {{f(h (X b g O, ))}7T D™ (s (%15 (X ))}1}2

{Zj‘l{{f(mx,),ug(x,))}_‘D‘m} } {Zj‘1{{f(mx,),uﬁ(x,))}‘}ml

Using Kraft’s inequality, we have:
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Hl 1

{z;{{f(uA<xi),uE<x,>)}T}”‘] {2;{{f(m(xa),ua(xi»ﬁr)“} }

or!

-1
1

D [ G 5 (KON = 2 TR (s () (5,03 D]
or.
2 G G GO = 27 [{F e G (31 D]

dividing both sides by t, we get.:

> TE (uy (%) 15 (%0 . > TE (g, ()15 (% 0)FD]
t B t

Subtracting n from both sides, we have:

Z [{f (g () (00— 1] . Z“ [F Qs G ) g (5, ID 1]
t B t

Taking ¢ =t+1,t = «-1 and:

£ 1y O8G0 =B (7 = (1 ()" Yy G0 + (111, ) )}

Equation 15 becomes:

z. [{(“A G0 1 (11 G J{me G)% 1 (1 02)) 71} )

o—1

3 [l 007 (1= 1) 000 (1= 0) D2 -1

o—1

Dividing both sides by o, we get:

Do G R i

o{o—1) a

> [{(MA (x)"+ (lqu(X;))m)(Hg (x) +(1*“B(Xi))m)}7l}

a(o—1)

16
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that is D < L, which proves the theorem.

Theorem 2: For all uniquely decipherable codes:

D“JDgLa,p
Where:
L :LZ {(HA(X) — 1, (%)) )(pB(x) +(1=py ) )}Dn,(wrl)
T {(MA(X ) (1 (X ))p)(HB(X ¥+ (1 pE(x‘))E)}Dmmfl)

where, either =1, f<1 or a<1, =1

Proof: Since from KEq. 16, we have:

P [{(MA )%+ (1-py (Xi))&)(uﬁ (x)*+ (lfuB(xi))m)}f 1] .

o—1

S e G () 050" (1 61" 05 -1

a1
Multiplying both sides by {(¢-1), we get:

2 [{(HA (x )+ (1-p, (x)) )(pﬁ ()7 + (1-py (31 )} _ 1} -
2o [{(PA () + (1=, (% ))m)(uE ()" + (1=pg (%)) )} DR _ 1]

Changing « to B, Eq. 20 becomes:

Z; |:%(MA (xF+(1-py (xl))ﬁ)(uﬁ(x1 Pl (Xl))ﬁ)}7 1} .
p H(“A () + (I—PHL\(XJ)ﬁ )(pB(xi)ﬁ +(1-py (Xl))ﬁ)}Dni(ﬁ—n _ 1}

Subtracting Kq. 21 from 20, we have:

] P(uA(xl)%(luA(xl))“)(uB(xl)%(luﬂ(xl))“)}]

| = 0ms st 0mc |
u {(“A(Xi)U'-%—(I—PA(XJ)DL)(HB(XJ +{1-py (%)) )}Dn,(cx—l)
ot {(HA(XJE+(1*MA(X1))B)(HB(X1) (- uB(X)B)}Dl“ﬁ*‘)
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Dividing both sides by (B-«), we have:

. §lia G (1= (00)” Y G+ (111 ) ) -
Z B f =
(b = (= ) Y 0" + (= () )

1 Z {(HA(X) +{1-p,(x) DL)(HB(X) + 1 g (X )) )}D"‘(“'D
{(“A(X) (L (x) B)( ()5 (1, (x) ) )}Dm(ﬁ—l)

That is D, ,<L, ; which proves the theorem.

Theorem 3: For all uniquely decipherable codes:

D'D‘-,ESL'D‘“E
where:
br, o1 0 G0 + =m0 7 s (x)" + (L py )7 -1 @2)
B e R (NG S SN S ITME VRN INE S
and:
Lo {(MA(Xx)m+(lqu(X‘)m)(uE(xx)H(lfuB(X‘)m)}Dm(m—u71 ©3)
B {{a () 4 (00 V(R 05 )P (L, )P D 1

To prove this theorem, we first prove the following lemma:

Lemmal: For all uniquely decipherable codes:
[ a7+ =iy 7 g G+ =y () 1]

<[ a0 + oy 007 (e (6 + (L ()7 ) D70 1

Proof of the lemma: From (3) we have:
PN TRESNNES) TED WM {TRCHYMES) 2ol
Subtracting n’ from both sides, we have:
PR NERTHER) IR B INNE I TNCSRTHER) Jeiesl
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Taking ¢ =t+1,t = «-1 and:
{000 1o 0} = 1 0607 + e (e (s (3 + (1 o)) )]

we have:

[zll{(“ﬂ(xﬂ” (s 063 ) (#o5) + (1-hg (xi))“)}fl}

<[ 20 f e+ (om0 (e + (1) Do 1] (24)
Which proves the Lemma.
Proof of the Theorem 3: Changing « to pin (Kq. 24), we get:
|:Z:]=1{(“A (x )B + (1 —paix ))B )(“B (Xi)DL + (1 —pg (% ))ﬁ)}_ 1:| (25)
] 2 s 00 (1 P Y 05+ (1) YD -1
dividing Eq. 25 from 24, we have:
20 {00 (- 008 e 007 (o GOF Jf -1
27 Al 00 00 Yo e+ (=) 1 |
2 Al O (= ) Yy 007+ (1 () D 1
37 A 00+ (=i ) s 05+ (1)) JfD 1
Dividing both sides by B-« we have:
D e Rl
=0 2 fl s () s (1) -1 |
L2 e e e ) (s - (me ) e 1
=0 3 A 00 (a0 Y (1 ) Do -1
thatis D', ;<L ;. which proves the theorem.
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