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ABSTRACT

An algorithmie solution of constrained linear programming problems is presented. The method
is based on the Quick Convergent Inflow Algorithm (QCIA) used in solving linear programming
problems but considers the effect of segmentation of the design or feasible regions on the algorithm.
A stopping rule based on the concepts of variance exchange algorithms 1s proposed. The algorithm
converges to the global optimizer of the objective function as demonstrated using numerical
illustrations.
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INTRODUCTION

The goal of linear programming is to maximize or minimize a linear function, f(x;, x,,..., x,), of
n variables defined on a design or feasible region whose boundary is characterized by linear
inequalities and equations. The linear function may be written in the form:

1
), %00 X)) =E X,
i

where, ¢; is the coefficient of x. Solutions of the Linear Programming (LF) problems are possible
using the simplex method or its variants. Also, statistical principles have been utilized in the search
for solutions to LP problems. Cdiakosa and Iwundu (2013) introduced the Quick Convergent Inflow
Algorithm (QCIA) for solving linear programming problems. The algorithm, as a line search
technique, uses experimental design principles offered by Onukogu and Chigbu (2002). The
number of support points, N, of the design measure is bounded by p<N<¥p (p+1)+1. Although, the
algorithm 1s effective in solving linear programming problems and competes favourably well with
existing methods, such as the simplex method, linear exchange algorithm of Umoren (1999) and
quadratic exchange algorithm of Umoren (2002), as seen in Odiakosa and Iwundu (2013), it is
possible that by applying the stopping rule in some problems the QCIA may converge locally. Also,
the algorithm may not always reach the optimum of the linear objective function for the design size
bounded by p<N<¥%p(p+1)+1. For such problems, the inflow algorithm fails to converge at the
required optimum.

Asg in linear programming, we consider in this study, problems in which a response of interest
is influenced by several variables with an objective of optimizing the response. We specifically study
the effect of the QCIA on segmented regions and present a method that overcomes the possible
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convergence of the QCIA at non-global optimum. The strength of the methed 1s based on the
concepts of the linear exchange algorithms of Umoren (1999) and Umoren (2002) which depend
fundamentally on optimal design theory and are adequate for solving constrained optimization
problems.

SEKGMENTS

Given the triple [X F 3 ], where, the components are as defined in Odiakosa and Iwundu
(2013), the design region, X is partitioned into K non-overlapping segments, say 5, 5,..., 5,
where, k is a possible integer greater than unity. The number of support points, N, in the Kth
segment need not exceed Yep(p+1)+1, where, p is the number of parameters in the polynomial of
interest. The support points, per segment, must satisfy the constraint equations and do not lie

outside the feasible region.

EXCHANGE ALGORITHMS FOR OPTIMAL DESIGNS

The exchange algorithms serve extensively well in generating optimal designs. These
algorithms include the variance exchange algorithms, the norm exchange algorithms, ete.
Exchange algorithms seek iteratively for improved designs by replacing peints in a current design
with points selected from a list of candidate set following a specified exchange rule. An exchange
which improves the design is accepted otherwise the exchange is rejected.

METHODOLOGY
Algorithmic framework: The line search exchange algorithm presented in this work is defined
by the following steps:

Step 1: Partition the feasible region into K segments

Step 2: Select N support points namely, %, x,..., X, Xy, from each of the K segments, such that
p<N<¥% p{p+1)+1 and hence make up the design measures, £, £,,..., £,.. Where:

1

2

Lol e

g =l li=L2 .k (1)

2

BT

| =

Step 3: Compute the parametrs x' 4" and p. where, at the rth iteration, x, is the arithmetic mean

of the support points selected from the K segments. The vector, d is the normalized

direction of search at the rth iteration and p is the optimal step-length at the rth iteration;
for more on the parameters, see Onukogu (1997)
Step 4: At the rth iteration make a move to the point:

X -X+pd (2)
where, X is the point reached by the line search equation at the rth iteration.
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In a minimization preblem, Eq. 2 becomes:

X =X g d (3)
In a maximization problem, Eq. 3 becomes:

X =X+gd (4)

Step 5: Employ a stopping rule as:
Let, x/,x,....X., and X be local minimizers in a minimization problem such that:

The algorithm terminates at the sth iteration, where the value of the cbjective function at
the sth iteration is suchthat f(xX’ ) <f(X)). In a maximization problem, let X, %, %' and X
be local maximizers such that:

* * * *
Xl EX 2 >Xs—l >Xs

Mg 2,2

The algorithm terminates at the sth iteration, where the value of the ohjective function at
the sthiteration is such that £f(x )<fix)).

NUMERICAL ILLUSTRATIONS
We employ some numeric examples to demonstrate the effectiveness of the algorithm in selving
linear programming problems.

Illustration 1:
Maximize z=3x,+2x,
Subjectto  2x,+x,<6
X, 1+2x%,26
Xy, X520

To attempt this problem we employ two segments defined by:

S, = [Xp %y 02x,21.5, 02x,23.0]
S, = [%, X 1.52x,23.0, 02x,23.0]

We select n support points from each of the two segments following the steps outlined in
previous section and satisfying the linear constraints, to make up the design measures:

Ty Yl ]
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These measures together with the model form the design matrices, X, and X, respectively as:

0, 3 7 1

The associated information matrices and their inverses are as follows:

X =

. 2.25 5.0
XX =
3.0 13
0.6420 —-0.1481
(X, X)) ' =
—0.1481 0.1111
15.25 2.5
X;XQ =
2.5 1
0.1111 -0.2778
(X‘Q: XE)_I =
—0.2778 1.6944

From Onukogu and Chigbu {2002), the matrices of coefficient. of convex combination are:

[0.1475 0
H, =
0 0.9385 |
[0.8525 0
H, =
0 0.0615 |

The average information matrix:
M, (&, )=H, XX, H, +H, X,X, H,
Yields:
0.0490 0.4153 11.0830 0.1311 11.1310  0.5404

Ml(&N): + =
0.4153  11.4502 0.1311 0.0038 0.5464 11.4540
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With inverse matrix:

0.0900 —0.0043

M (&) =
—0.0043 0.0875
The response vector is:
Z 34.4888
Z = =
z, 24.5472

Where, the components are evaluated as:
z; =1(11.1320, 0.5464), z, = £(0.5404, 11.4540)

The direction vector 1s:

d M (EN)=z= m

The normalized direction vector 1s:
4 0.8322
| o
0.5548
The optimal starting point 1s:

-+ [L.7500
X =
1.5000

The evaluation of the step-length is as follows:
From the first constraint.
(2,1){1.7500} P
1.5000

Pu = = —0.45006

0.8322
0.5548

From the second constraint:

1.7500
ol
1.5000

Pz = 0.8322
(12)
0.5548

44

= —0.6437




Asian J. Math. Stat., 7 (2): 40-59, 2014

Following the optimal step length as proposed by Odiakosa and Iwundu (2013):

Pl =lp,,| = 0.4506

With ¥/ p’ and d/, a move is made to:
X P d

e e [17500 0.8322] [2.1250
X =X +pd = +0.4506 =
= 1.5000 0.5548 | |1.7500

The value of the objective function at X is 9.8750.

To check for optimality, a second move is required. We redefine the design measures as:

0 3 % !
g _{ 2]) £ =|3 0

2.1250 1.7500

by incuding the local optimum in the design.

These measures together with the model form the design matrices, X; and X,, respectively as:

2.1250 1.7500

Following the earlier computational procedures, the matrices of coefficient of convex
combination are:

01320 0
H =
0 0.8104 |
[0.8680 0
H, =
0 0.1896 |

The average information matrix is:
0.0392 03209 148918 0.1311 149311 13444

MZ(E—'N):HI X1X1 HI‘+H1 szz Hz = + =
0.3209  8.5377 1.0235 0.1460 1.3444 8.6838
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Its inverse matrix is:

0.0679  —0.0105

M, (&) =
—0.0105 0.1168
The response vector is:
Z 47.4821
Z = =
z, | |21.4008

The direction vector is:
3
d,=M;'(¢)z= L}

The normalized direction vector is:

o1 [3] _[os3n
= Rriat 2] |05548
The optimal starting point in this second search 1s:
+ | 1.8250
X, =
{1.5500}

The optimal step length, ¢’ is as follows.
From the first constraint:

1.8250}

(2'1){1 5500
py=— = 03605

0.8322
(2.1)
6.5548

From the second constraint:

1.8250

~ (1’2)[1.5500

0, = } = —0.5536

0.8322}

(1’2){0.5548
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Optimal step lengthis o' =[py| = 0.3605.
With X: o, &>, a second move is made to:

* o w x 1.8250 0.8322 2.1250
X, =X,-p,d; = +0.3605 =
= 1.5500 0.5548 1.7500

The value of the objective function at X, is 9.8750.

We check for convergence by considering the norm of the vectors, X, and X

This gives ‘X; - =0.0000 which is small.

To ensure that the algorithm has not converged at a local optimum instead of the global

optimum, we exchange the point (¥y) in the kth segment having minimum value of chjective

function with the the optimizer:
« | 2.1250
X =
{1.7500}
whose value of objective function f(x}) =9.8750. With this, we form new design measures

5
0 3 % :
gl—[ 21, g, | 2.1250 1.7500
21250 1.7500

5

A 1

X, = | 2.1250 1.7500
2.1250 1.7500

Continuing the process yields the matrices of coefficient of convex combination:

. 0.5229 0
"o 0.9314

04771 0
H, =
0 0.0686

The average information matrix is:
0.6152 1.4611 3.4784  0.3252 4.0936  1.7863

M3(&N):Hl X1X1 HI‘+H1 X2X2 Hz = + =
1.4611 11.2776 0.3252  0.0335 1.7863 11.3111
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The response vector is:

g 15.8534

IN
I
I

z, 279811
The direction vector 1s:

_1 _ 3
d; =M; (E.;N)Z_|:2:|

By normalization of the vector, dg, we obtain:

o ! 37 [o08322
- 2|2 0.5548

The optimal starting point 1s:

. [165
X, =
{1.90}

The step lengths using the two constraints are as follows.
For the first constraint.

1.65
) (2.1){1.90} -6

Py = ——a = —0.3605

0.8322
(2.1)
6.5548

For the second constraint:

1.90
Py =l = 02832

(1,2){0.8322}

(1,2)[1.65} i

0.5548

Hence, the optimal step length is pf = |p, | =0.2832.
With %I, d and g}, a third move is made to X =X; —p; d; i.e:

. [165 0.83227 [1.8857
X = +0.2832 =
1.90 0.5548 | |2.0571
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The value of objective function at ¥} is 9.7713.

We observe that there is no improvement in the value of the objective function and hence the
algorithm has converged globally.
The global maximizer of the linear objective function is:

. e 21250
X :X1 =

e 1.7500

f(X)) =9.8750

Mustration 2:
Maximize 7 = 3x,+2x,
Subject to 4x,+3x,<12
4x,+x%,<8
dx-x%,<8

4x,, x,20

Using two segments defined by S, = {x,, x,; 0<x,<1, 0<x, <4} and S, = {x,, x,; 1<x,<2, O<x, <4}, we

obtain the design measures:

These measures together with the model form the design matrices, X, and X, respectively as:

o efr ]

1 2 2 0

Following the same procedure we obtain the matrices of coefficient of convex combination as:

b _[00303 0
o 0.2381

b _[09697 0
o 0.7619

The direction vector is given by:
3.0008
d =
[2.0009}
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The normalized direction vector 1s given by:

QT _ {0.8321}
0.5548
The optimal starting point is:
=+ |1.2500
X =
{LSOOO}

The optimal step length is:

py = P12/ =0.3863

and with X', 47 and p; a move is made to:

« .o |1.5714
X=X-pd= 17143

The value of the objective function at X is 8.1428.
To make a second move, we redefine the design measures as:

}/ 2
&1—[% 2]: E.'z: 22 0

1.5714 1.7143

The corresponding desigh matrices, X, and X, are, respectively:

}5 2

X, =
1 2

1.5714 1.7143

The direction vector is:
2.9984
d, =
1.9999
Normalizing the direction vector we have:

0.8321
d,=
0.5550
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The optimal starting point 1s:
—+ | 1.3143
Xg =
{L5429}
The optimal step length is:

Py = |pge| =0.3090

and with X}, d; and p7, a second move is made to:

w x .o [15714
X=X, -pd, =
=T D=t 7143

The value of the objective function at X is 8.1428.

Although the norm of the vectors X and X is 0.0000, we make a third move to check against
converging at a local optimum instead of the global optimum. We replace the point, [2, 0] with
[1.5714, 1.7143] in the second segment thus forming new design measures:

3 2

Lo, 2
£ =2 , £, =[1.5714 17143
2 1.5714  1.7143

These measures together with the model form the design matrices, X, and X,, respectively as
below:

3 2
., 2
X =2 , X, =[15714  1.7143
12 15714 1.7143

The direction vector 1s:

Normalizing the direction vector, we have:
« | 0.8322

dy =
0.5548
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The optimal starting point 1s:

- {1.2286}
X =

1.8857
The optimal step length is:

pi= oy, =0.2861

and with X, d; and p?, a third move is made to:

. o .. [L4667
=X, 4=

The value of the objective function at X is 8.4889 and is higher than the value at X Thus
indicating an improvement using the exchange principle.

We make a fourth move by exchanging the pont (1.5714, 1.7143) with the point
{1.4667, 2.0444) in the second segment. and thus form the design measures.

2
Ik
2 , & =[1.5714 17143
1 1.4667 2.0444

These measures together with the model form the design matrices, X, and X, respectively, as
follows:

3 2
Lo, 2
X, =2 , X, =[1.5714  1.7143
12 1.4667  2.0444

The direction vector is therefore:
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The optimal starting point 1s:
— 1.076
X:; =
[1.9517}
The optimal step-length is:

i =Py =0.2633

and with Xj, d; and p;, a fourth move is made to:

The value of the objective function 1s:

f(x,) = 8.4757

Since there is no improvement in the value of the objective function we end the search and
conclude that the global maximizer of the linear objective function is:

. . [1.4667
X, =X, =

e 2.0444

£(X,) =8.4889

IMustration 3:

Minimize f(x) = 3x,+2x,

Subject to 2%, +%,26
X, tx,24
x,+2x,26

X, X20

Solutions to the linear programming problem as reported in Umoren (1999) using active set
method, LEA, Q.EA and MNEA as well as in Odiakosa and Iwundu (2013) using the simplex
method and the quick convergent inflow algorithm are summarized in Table 1.

We present a solution to the above problem using the concept of variance exchange in which
the design point in the design having the maximum variance of prediction is exchanged with the
a point reached by the line search equation at each iteration.

With the segments 5, =[x, x,: O<x, <2, O<x,<4] and S, =[x, % 2<x,<4, O<x,24], we define the
design measures as:
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Table 1: Solutions using six search techmicques

Technique No. of iterations Value of the minimizer Value of the ohjective function
LEA 4 1.87,2.27 10.15

QEA 4 1.88, 2.24 1012

MNEA 4 2.07,1.97 10.15

Active set 2 2.00, 2.00 10.00

Simplex 2 2.00, 2.00 10.00

QCIA 1 1.9375, 2.1250 10.0625

1 4

1.7908 2.4185 4 1
1.7831 2.4338

£ - 2 4 :iz_F 2}

These measures together with the model form the design matrices, X; and X, respectively as

shown below:
1 4

2 4 2 2
X = . Xy =

1.7908 2.4185 4 1

1.7831 2.4338

The matrices of coefficient of convex combination are:
0.1841 0 0.8159 0

H = ,H,=
0 0.77763 0 0.2237

The optimal starting point is:
—s | 2.0957
)_(1 =
{2.6421}
The direction vector is given by:

2.9982

|~
Il

1.9943

The normalized direction vector 1s given by:
« | 08326

d =
0.5538
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The optimal step-length is pr =[p,,| = 0.37586.
With X, BT and d, a move is made to:

e Y 1.7830
X =X _BT d = |:2 4341:|

The value of the objective function at X! is 10.2172.
In other to make a second move, we exchange the point (2.4) with {1.7830, 2.4341) and form

a new design measure:

1 4
1.7830  2.4341 2 2
SR 1

" 17908 24185
17831  2.4338

These measures together with the model form the design matrices X, and X, respectively as

shown below:

1 4
17830 2.4341 I2 2
Pl 7008 241850 T |4 1

1.7831  2.4338

The matrices of coefficient of convex combination of the inverses of the information matrices we

have:

02155 0 0.7845 0

H1 = s H2 =
0 0.7781 0 0.2219

The direction vector is given by:

2.9999
d,=
1.9976

Normalizing the direction vector we have:

. [0.8322
= 0554

The optimal starting point is:

— 2.0595
X =
{2.3811}
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The optimal step length 1s:

P, = |pu| = 0.2254

With x7, 4] and p', a second move is made to:

=+« x |1.8719
X =%-pd= 22562

The value of the objective function at 3 is 10.1281.
We make a third move by exchanging (1, 4) with (1.8719, 2.2562), our new design measure
becomes:

1.8719  2.2562
1.7830 24341 . [2 2
L7908 24185 L 1}
1.7831  2.4338

g =

The measures together with the model form the design matrices, X, and X, respectively as:

1.8719 22562
1.7830  2.4341 {2 2}
X

1

17908 24185 ¢ |4 1
17831 24338

The matrices of coefficient of convex combination are:
0.0049 0 09951 0

0 0.0333 0 0.9667

The direction vector is:
2.9983
d; =
1.9956
Normalizing the direction vector, we have:
+ | 0.8323
d, =
0.5540
The optimal starting point 1s:
—+ | 2.2048
X =
{2.0904}
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The optimal step length 1s:

BZ = |p,| = 0.1987

and with . d"

X,,d; and p’, a third move is made to:

+ —s . o+ 20394
X, =X -p. d =
= = 1.9803

The value of the objective function at XE 1s 10.0788,
On checking for optimality, we have obtain the norm, 0.3228, of the vectors Xz
is large. We cbserve that:

and Xz which

i 2.0394
X;=
1.9803

falls in the second segment hence we form new design measures:

18719  2.2562 ) )
17830  2.4341
= = |4 1
& 1.7908 2.4185/ =
20394 19803
17831 2.4338

These measures together with the model form the design matrices, X, and X,, respectively as

shown below:

1.8719 2.2562 5 2
1.7830 2.4341

X, = L X, = |4 1
1.7908 2.4185

2.0394 19803
1.7831 2.4338
The matrices of coefficient of convex combination are:

0.0049 0 0.9955 0

H, = , H,=
0 0.0208 0 0.9792

The direction vector is therefore:
4 3.0040
d, =
2.0015
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Normalizing the direction vector, we have:
Q: _ |:0.8321 }
0.5544
The optimal starting point is:
—+ | 2.1812
X, =
{2.0747}
The optimal step-length is:

P, = lpys| = 0.1703

and with X, d, and p, , a fourth move is made to:

1X, =X, ¢’ sf;—[

2.0394
1.9803

The value of the objective function is:
f(X;)=10.0788

the norm of the vectors X! and x| is 0.0000 which is small.

Since no further move improves the process, we conclude that the value of the objective
function is 10.0788 and the global minimizer of the linear objective funection is:

x| 2039
=t T =47 9803

CONCLUSION

The effect of segmentation of design regions on the Quick Convergent Inflow Algorithm (QCIA)
for locating the global optimizer of a response surface has been considered. The technique allows
the response function to be defined on smaller regions is certain to locate the optimizers of response
functions. An exchage method based on the variance of predicted response has proven useful
particularly in leading the line search technique to the required optimum. The method checks
against the algorithm converging at a non-global optimum. The starting point of the algorithm, the
direction of search and the step-length are optimally chosen. A stopping rule based on the concepts
of varince exchange has been proposed. The effectiveness of the techniques has been demonstrated
with some numerical illustrations and results compare favourably well with existing methods.
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