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Abstract
Background: This study proposed a method for the estimation of missing values in a stationary autoregressive (AR) process and proved
the unbiasedness of the obtained estimate. Materials and Methods: Box and Jenkins autoregressive integrated moving average (ARIMA)
was employed for order selection in the analysis. Absolute deviation of estimates from actual values was used as basis of comparisons
with existing methods. Results: The result showed that the proposed method provides better estimates than the existing methods.
Minimum  mean  square  error  of  the  estimate  was  also  obtained  theoretically  and the estimate was found to be unbiased.
Conclusion: Since the estimate obtained by this method is found to be unbiased, the method has offered another framework of with
missing values in a stationary autoregressive (AR) process.
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INTRODUCTION

One of the serious problems faced in data collection and
analysis is missing observations. Nature does not always
provide a complete data set, hence, the mechanism for
observing time series is often imperfect. Equipment failure,
human error or the disregarding of inaccurate measurements
can   introduce   missing   values.   In   statistics,   analysis   is
often carried out with complete observations. Where any
observation is missing either by natural or human error, the
missing value has to be estimated to complete the
observations before an analysis is carried out.
According to Abraham and Thavaneswaran1, data that are

known to have been observed erroneously can fairly be
categorised as missing. By this classification, erroneous data is
believed to wreak havoc with the estimation and forecasting
of linear and non linear time series models. In their study, two
methods for estimating missing observations; one using
prediction and fixed point smoothing algorithms and the
other using optimal estimating equation theory were
identified. Recursive estimation of missing observations in an
autoregressive conditionally heteroscedastic (ARCH) model
and the estimation of missing observations in a linear time
series were shown as special cases. Using these methods,
construction of optimal estimates of missing observations was
obtained.
Phong and Singh2 proposed modelling gene expression

profiles as simple linear and Gaussian dynamical systems and
applied the Kalman filter to estimate missing values. In their
study, they discovered that while other current advanced
estimation   methods   are   either   sensitive   to  parameters
with no theoretical means of selection. Their approach was
advantageous   because   it   makes   minimal   assumptions
that are consistent with the biology. The efficiency of the
approach  was  demonstrated  by evaluating its performance
in estimating artificially introduced missing values in two
different time series data set and was compared with a
Bayesian approach dependent on the eigen vectors of the
gene expression matrix as well as a gene wise average
impartation for missing values.
Tight  et  al.3  established the applicability of time series

and influence function techniques in the estimation of missing
value and detection of outliers. They went further and made
cooperative assessment of new techniques with those used by
traffic engineers in practice for local, regional or national traffic
count systems. Their result showed that the replacement
values derived from the ARIMA model using residuals were
found to be most accurate.

Maravall and Pena4 proposed the estimation of missing
observations  in  possibly  non  stationary  ARIMA  models,
where  the  models  was  assumed  known  and  the  structure
of  the  interpolation  filter  was  analysed  using  the  inverse
autocorrelation function, it was shown that the estimation of
a missing observation is analogous to the removal of an outlier
effect. Both were closely related with the signal plus noise
decomposition of the series. The results were extended to the
case of missing observation near the two extremes of the
series, the case of a sequence of missing observations and
finally to the general case of any number of sequences of any
length of missing observations.
For a stationary series, the problem of interpolating

missing values given an infinite realization of the stochastic
process was solved by Grenander and Rosenblatt5 and Wei6.
The interpolator was obtained as the expected value of the
missing observation given the observed infinite realization of
the series. For many years, however, their result was not
extended to the more general problem of interpolation in a
finite realization of a possibly non stationary time series
generated by a model with unknown parameters4.
Xia  et  al.7  examined 6 methods for estimating missing

climatological data for different time scales at 6 German
weather  stations  and  3  Bavarian  forest  climate  stations.  It
was discovered that the multiple regression technique
predominantly gave the best estimation under different
topographical conditions.
Anava et  al.8  studied  the  problem  of  time  series

prediction using AR model in the presence of missing data.
The signal and missing data were set to be arbitrary. The
problem was cast  as  an  online  learning  problem  in  which 
the  goal  of the learner was to minimize prediction error. An
efficient algorithm for the problem was devised which was
based on autoregressive  model  and  does  not  assume  any 
structure on  the  missing  data  nor  on  the  mechanism  that 
generates the time series. The result showed that the
algorithm’s performance asymptotically approaches the
performance of the best AR predictor in hind right and
corroborate the theoretic results with an empirical study on
synthetic and real world data.
Ahmed and Al-Khazaleh9 proposed new method of

estimating missing data using the filtering process. The
filtering process involved substituting various correlations in
the weights of moving average model. The results obtained
were checked with Naïve test and were found to be good.
There are quite a number of methods for dealing with

missing observations. The commonest ones are: (i) Replacing
the   missing   observation   with    the    mean    of    the   series,
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(ii) Replacing it with the Naïve forecast which uses the current
time periods value for the next time period, (iii) Replacing it
with a simple trend forecast and (iv) Replacing it with an
average of the last two known observations that bound the
missing observation9. These methods are simple and most
times provides better estimates than some of the complex
methods outlined by some authors above.

MATERIALS AND METHODS

Stationarity: A time series is said be stationary if the statistical
properties are essentially constant through time. In order
words, a series Xt is said to be stationary if for any admissible
time  points  t1,  t2,  ....,  tn  and  any  k,  all  the  joint  moments
up   to   order   2   of   exist   and   is   equal  to1 2 nt t t{X ,X ,...,X }

the  corresponding    joint    moments    up    to    order    2   of
                                 .1 k 2 k n kt t t{X ,X ,...,X }

  

Given   an    autoregressive    process    of    order   p
[denoted AR (p)]:

t 1 t-1 2 t-2 p t-p tX  =  X + X +...+ X +   

The stationarity condition is that the roots of the
characteristic equation:

2 p
1 2 p(B) = (1- B- B - - B ) = 0     

must lie outside the unit circle.

Autocorrelation function (ACF) and partial autocorrelation
(PACF): The order (p) of a model is identified by examining the
behaviour of the autocorrelation and partial autocorrelation
function for the values of a stationary time series. For an  AR
process, the pacf cut off after lag p, while its autocorrelation
function is infinite in extent and consists of a mixture of
damped exponentials and/or damped sine waves10.

Missing value approach: Suppose the data with the missing
value is being generated by an autoregressive (AR) process of
order p. That is:

t t(B) X  =   

where,                                                 ,    the     Ni’s      are    the    AR
2 p

1 2 p(B) = 1- B- B - - B      

parameters and B is the backward shift operator.
Let us consider a time series Xt with n observations. Let

the ith value of Xt be missing. Let the missing value  xi  be  such

that the values xi-1, xi-2, ..... , xi-p exist; where, p is the order of the
series xi, xi+1, .... , xn.
This method proposes that an AR (p) model be fitted to

the series xi, xi+1, .... , xn. Suppose the resulting model is:

(1) (1) (1)
t 1 t 1 2 t 2 p t p tX X X ... X          

Then the missing value  is estimated at the first step as:

   (1) (1) (1) (1)
i 1 i 1 2 i 2 p i px x x ... x        

The value  obtained is then substituted at the missing(1)
ix

position in the data and the analysis is repeated using the
entire data  to obtain a new model with(1)

1 2 i nx , x ,...,x ,..., x
different parameters:

(2) (2) (2)
t 1 t 1 2 t 2 p t p tX X X ... X          

The final value of xi is re-estimated as:

   (2) (2) (2) (2)
i 1 i 1 2 i 2 p i px x x ... x        

RESULTS

The above proposed method is illustrated using Blowfly
time series data6. There are n = 82 number of observations.
Now, suppose the 5th observation x5 = 4424 is missing. A time
series model is first fitted to the series x6 = 2784 to x82 = 4066.
Following the nature of the autocorrelation function and
partial function (using Minitab software), the series is said to
follow a AR (1) process giving the model:

Xt = 0.986430Xt-1+εt

This gives the first estimate of x5 to be:

(1)
5 4x  = 0.986430x  = 0.986430 (4639) 4576

The second step involves replacing this estimate in its
missing position and re-applying the Box-Jenkins method to
the entire data to obtain the new model:

Xt = 0.982933Xt-1+εt

This gives the final estimate of x5 to be:

(1)
5 4x   = 0.982933x 4560
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Table 1: Estimates of the missing values and their errors
xi Actual value KF IF M NF TF A I NM
x5 4424 3342 (1082) 5123 (699) 4139 (285) 4639 (215) 4573 (149) 3712 (712) 4591 (167) 4560 (136)
x11 3835 4131 (296) 3947 (112) 4139 (304) 3920 (85) 3861 (26) 3769 (66) 3941 (106) 3853 (18)
x12 3618 3794 (176) 3812 (194) 4139 (521) 3835 (217) 3791 (173) 3443 (175) 3795 (177) 3770 (152)
x24 2717 3011 (294) 2234 (483) 4139 (1422) 2432 (285) 2517 (200) 2441 (276) 2613 (104) 2660 (57)
x29 3156 3675 (519) 3742 (586) 4139 (983) 3677 (521) 3621 (467) 3975 (819) 3634 (478) 3614 (458)

Thus, any missing observation xi can be estimated using:

(2)
i i-1x  = 0.982933x

Stationarity of the AR (1) process: For this process, the root
of auxiliary equation is:

(1-0.982933B) = 0

Y B = 1.01736334>1

Thus, the process is stationary.

Comparison of some old methods with the new method: A
comparison of the various methods of estimating missing
values in time series with the new proposed method is made.
This is going to be assessed by the Absolute Deviations (AD)
of the estimated values of the different methods from the
actual values in the raw data. This absolute deviations will be
called errors. However, few existing methods that are simple
in computation and are within the reach of our software will
be considered for comparison. The following methods with
abbreviations will be compared: Kalman  Filter  (KF), Influence 
Function (IF), replacing with mean of  the  series (M), Naïve
Forecast (NF), simple Trend Forecast (TF), average of the last
two known observations that bound the missing observation
(A), Interpolation (I) and the New Method (NM).
The missing values  created at different positions  in the

Blowfly data set are presented in Table 1. The actual values
removed at the different positions to create the missing
observations were randomly selected. The estimates provided
by the different estimation methods are also presented and
the calculated errors (AD) are placed in brackets under each
estimate.
In Table 1, it is clearly shown that the New Method (NM)

has the smallest errors in all the estimates. This means that
amongst all the estimation methods considered, the new
method provides the best estimates. Next, the minimum mean
square error of the estimate is obtained theoretically and the
estimate is shown to be unbiased.

Minimum Mean Square Error (MMSE) and unbiasedness of
the estimate: To obtain the MMSE, the variables are treated as
random variables and the series Xt is assumed to be stationary
with mean, µ = 0. It is already known that if {Xt} is stationary
and follows an AR (p) process, then it can be converted to an
infinite Moving Average (MA) process. That is an AR (p) series 
Xi can be written:

Xi = εi+ψ1εi-1+ψ2εi-2+.... (1)

= ψ (B) εi

where,  and  ψ0 = 1.  j
jj 0

ψ B ψ B


 

(2)j
i j i j i jj 0 j 0

X ψ B ε ψ ε 

 
   

where, εi -NIID (0,      ).2


Since, Xi is a linear of the current and previous random
shocks (the εi’s), then the estimate      is also a linear of the

iX
current and previous shocks. Thus, it can be written:

 * * *
1 i 2 i 1 3 i 2i ψ ε ψ ε ψX ε    

Using (2) and noting that E [εi εi] =         and E [εi εj] = 0, the2


mean square error of the estimate can be obtained as:

  
2

2 2 2 * 2
ii 1 p ε j j εJ 0

E X X 1 ψ ψ σ ψ ψ σ


           

p2 2 2 *
j j jj 0 j 0

ψ [ψ ψ ]

  
     

which is minimised by setting              .*j jψ ψ
Hence, from Wold’s decomposition11:

* * *
i i 1 i 1 p i p 1 i 2 i 1 3 i 2X ε ψ ε ψ ε ψ ε ψ ε ψ ε           

Which can be written as:


ii iX  = e +X
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where, ei = εi+ψ1εi-1+…+ψpεi-p is the error of the estimate. Since
E [ei] = 0, the estimate  is unbiased.

iX

DISCUSSION

The study of Anava et al.8 clearly shows that their
algorithm must have been applied to a wrong data. This is
because they did not consider the underlying mechanism of
the data before they cast an online learning problem in which
the goal of the learner was to minimize prediction error. This
study, however has determined the underlying structure of
the data to be of ARIMA type before the application was
made. Besides, the aforementioned researches of the subject
matter in the review were based only on empirical methods.
This study has substantiated its result with theoretical
backings.

CONCLUSION

In essence, this study has proposed a method of
estimating missing values in a stationary autoregressive (AR)
process. Comparative study was carried out with other
existing methods and the new method was found to provide
the best estimates. To support this, a theoretical proof showed
that the estimate obtained is unbiased. Hence there is no gain
saying that this method offers another possibility of
estimating missing values in a stationary autoregressive (AR)
process.
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