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INTRODUCTION

The most important things for obtaining data pertaining
to human population is the social survey. To measure
opinions, attitudes and behaviors that cover a wide band of
interests, the social survey has been established as being
tremendously practical. The surveys are conducted due to
many reasons, non-availability of certain facts/information in
the  archives being the most understandable and apparent.
For instance, if one is interested in knowing crime rate,
information about unseen crimes or unreported victimization
experience is not available in formal records on crimes.
Sometimes the facts about the individuals (in a population)
are inaccessible to the investigators for legal reasons.
Questionnaires, in particular social surveys, generally consist
of many items. Some of the items may be about sensitive/high
risk behavior, due to the social stigma carried by them. One
problem with research on high-risk behavior is that
respondents may consciously or unconsciously provide
incorrect information. In psychological surveys, a social
desirability bias has been observed as a major cause of
distortion in standardized personality measures. Survey
researchers have similar concerns about the truth of survey
results/findings about such topics as drunk driving, use of
marijuana, tax evasion, illicit drug use, induced abortion, shop
lifting, child abuse, family disturbances, cheating in exams,
HIV/AIDS and sexual behavior. Thus to obtain trustworthy data
on such confidential matters, especially the sensitive ones,
instead of open surveys alternative procedures are required.
Such an alternative procedure known as “randomized
response technique (RRT)” was first introduced by Warner1.

The Randomized response (RR) technique was first
introduced by Warner1 mainly to cut down the possibility of
(1) Reduced response rate and (2) Inflated response bias
experienced in direct or open survey relating to sensitive
issues. Warner1 himself pointed out how one may get a biased
estimate in an open survey when a population consists of
individuals bearing a stigmatizing character A or its
complement AC, which may or may not also be stigmatizing.
It requires the interviewee to give a “Yes” or “No” answer
either to the sensitive question or to its negative depending
on the outcome of a randomized device not reported to the
interviewer. Greenberg et al.2 derived results for Warner’s
model in the case of less than completely truthful reporting.
Later several modifications in RR technique have been
developed by various authors Fox and Tracy3, Chaudhuri and
Mukerjee4, Singh and Tarray5-7, Tarray and Singh8, Singh and
Tarray9, Tarray and Singh10-13 and Tarray14.

Stratified random sampling is generally obtained by
dividing the population into non-overlapping groups called
strata and selecting a simple random sample from each
stratum. An RR technique using stratified random sampling
provides the group characteristics related to each stratum
estimator. Also, stratified sample, protect a researcher from the
possibility of obtaining a poor sample15.

A STUDY OF RANDOMIZED RESPONSE TECHNIQUES

The description of the models due to Singh16 and Kim and
Warde15 are given below:

Singh model: Singh16 developed randomized response
techniques named RRT1 which is given below:

RRT1: In this procedure, each interviewee in a with
replacement simple random sample of size n is provided with
one randomized response device. It consists of the statement
“I belong to the sensitive group” with known probability P,
exactly the same probability as used by Warner1 and the
statement “Yes” with probability (1-P). The interviewee is
instructed to use the device and report “Yes” or “No” for the
random outcome of the sensitive statement according to
his/her actual status. Otherwise, it is simply to report the “Yes”
statement observed on the randomized response device. The
whole procedure is completed by the respondent, unobserved
by the interviewer. Then 21 the probability of a "Yes" answer in
the population is:

θ1 = PπS+(1-P)

An unbiased estimator of πS due to Singh16 is given by:

1

ˆ (1 P)ˆ
P

  
 

where,  is the proportion of "Yes" answer in a sample.̂
The variance of the estimator  is given by:1̂

S S S
1

(1 ) (1 P)(1 )ˆV( )
n nP

     
  

Kim and Warde model: Kim and Warde15 suggested a
stratified randomized response model based on Warner1

model. Suppose the population is partitioned into strata and
a sample is selected by simple random sampling with
replacement  in  each  stratum.  To  get  the  full   benefit   from
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stratification, it is assumed that the number of units in each
stratum is known. An individual respondent in the sample of
stratum ‘i’ is instructed to use the randomization device Ri
which consists of a sensitive question (S) card with probability
Pi and its negative question (Sc) with probability (1-Pi). The
respondent should answer the question by "Yes" or "No"
without reporting which question card she or he has. A
respondent belonging to the sample in different strata will
perform different randomization devices, each having
different pre-assigned probabilities. Let ni denote the number
of units in the sample from stratum i and n denote the total
number of units in sample from all stratum so that 

k

i
i 1

n n


 
Under the assumption that these "Yes" or "No" reports are
made truthfully and Pi (…0.5) is set by the researcher, the
probability of a "Yes" answer in a stratum i for this procedure
is:

Zi = PiπSi+(1-Pi)(1-πSi), for ( i =1, 2 ..., k)

where, Zi is the proportion of “Yes” answers in a stratum i, πSi
is the proportion of respondents with the sensitive trait in a
stratum i and Pi is the probability that a respondent in the
sample stratum i has a sensitive question (S) card.

The maximum likelihood unbiased estimate of πSi is
shown to be:

i i
Si

i

Ẑ (1 P )ˆ , for (i 1, 2,..., k)
2P 1
 

  


where,  is the proportion of "Yes" answer in a sample in theiẐ
stratum i. Since each  is a binomial distribution B (ni, Zi) andiẐ
the selections in different strata are made independently, the
maximum likelihood estimate of πkw (which is unbiased) is
easily shown to be:

k k
i i

kw i Si i
i 1 i 1 i

Ẑ (1 P )ˆ ˆw w
2P 1 

  
    

  
 

where, N is the number of units in the whole population, Ni is
the total number of units in the stratum i and wi = (Ni/N)  for
(i = 1, 2, ...k) so that 

k

i
i 1

w w 1.


 
The variance of  is:kŵ

2k
i i i

kw Si Si 2
i 1 i i

w P (1 P )ˆV( ) (1 )
n (2P 1)

 
      

  


The optimal (Neyman) allocation of n to n1, n2...nk-1 and nk
to derive the minimum variance of the  subject to kŵ

k

i
i i

n n


 
is approximately given by:

1/22
i Si Si i i ii

k 1/22
i Si Si i i i

i 1

w (1 ) P (1 P ) / (2P 1)n
n w (1 ) P (l P ) / (2P 1)



       
       

Thus  the  minimal  variance  of  an  estimator    iskŵ

given by:

21/2
k

i i
kw i Si Si 2

i 1 i

P (1 P )1ˆV( ) w (1 )
n (2P 1)

             


Ki et al.17 envisaged RR technique that applied the same
randomization device to every stratum. Stratified random
sampling is generally obtained by dividing the population into
non-overlapping groups called strata and selecting a simple
random sample from each stratum. An RR technique using a
stratified sampling gives the group characteristics related to
each stratum estimator. Also, stratified samples protect a
researcher from the possibility  of  obtaining a poor sample.
For the sake of  completeness  and convenience to the
readers, the descriptions of fuzzy sets, fuzzy numbers,
Triangular Fuzzy Number (TFN) and Trapezoidal Fuzzy Number
(TrFN) which are reproduced here from Bector and Chandra18,
Mahapatra and Roy19, Hassanzadeh et al.20 and Aggarwal and
Sharma21.

Fuzzy  sets  were  introduced  by  Zadeh22  to
represent/manipulate   data   and   information   possessing
non-statistical uncertainties.

It was specifically designed to mathematically represent
uncertainty and vagueness and to provide formalized tools for
dealing with the imprecision intrinsic to many problems.
However, the story of fuzzy logic started much more earlier. To
devise a concise theory of logic and later mathematics,
Aristotle posited the so-called “Laws of Thought”. One of
these, the “Law of the Excluded Middle,” states that every
proposition must either be True (T) or False (F). Even when
Parmenides  proposed  the  first  version  of  this  law (around
400 Before Christ) there were strong and immediate
objections: for example, It was Plato who laid the foundation
for what would become fuzzy logic, indicating that there was
a third region (beyond T and F) where these opposites
“tumbled about.” A systematic alternative to the bi-valued
logic of Aristotle. Three-valued logic, along with the
mathematics to accompany it. The third value can be best be
translated as the term “possible,” and the numeric value
between T and F. Eventually, an entire notation and axiomatic
system from which he hoped  to  derive  modern
mathematics. Later, four-valued logics, five-valued logics and
then declared that in principle there was nothing to prevent 
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the derivation of an infinite-valued   logic.   three-   and
infinite-valued logics were the most intriguing, but ultimately
settled on a four-valued logic because it seemed to be the
most easily adaptable to Aristotelian logic.

The notion of an infinite-valued logic was introduced in
Zadeh’s seminal work ”Fuzzy Sets” where the mathematics of
fuzzy set theory and by extension fuzzy logic. This   theory  
proposed   making   the   membership   function (or the values
F and T) operate over the range of real numbers [0, 1]. New
operations for the calculus of logic were proposed and
showed to be in principle at least a generalization of classic
logic. Fuzzy logic provides an inference morphology that
enables approximate human reasoning capabilities to be
applied to knowledge-based systems. The theory of fuzzy logic
provides a mathematical strength to capture the uncertainties
associated with human cognitive processes, such as thinking
and reasoning. The conventional approaches to knowledge
representation lack the means for representating the meaning
of fuzzy concepts. As a consequence, the approaches based
on first order logic and classical probability theory do not
provide an appropriate conceptual framework for dealing with
the representation of commonsense knowledge, since such
knowledge is by its nature both lexically imprecise and non-
categorical.

There are two main characteristics of fuzzy systems that
give them better performance for specific applications.

C Fuzzy systems are suitable for uncertain or approximate
reasoning, especially for the system with a mathematical
model that is difficult to derive.

C Fuzzy logic allows decision making with estimated values
under incomplete or uncertain information 

Fuzzy set: A fuzzy set  Ã  in a universe of discourse X is defined
as    the    following    set    of    pairs   Ã{(x,  µÃ  (x):  x0X}.    Here
µÃ (z): X÷[0, 1]  is  a  mapping  called  the  membership
function of the fuzzy set Ã and µÃ is called the membership
value or degree of membership of x0X in the fuzzy set Ã. The
larger the value of µÃ the stronger the grade of membership
in Ã.

"-Cut:  The "-cut for a fuzzy set Ã is shown by Ã" and  for
"0[0,1] is defined to be:

(1) A
A (x | µ (x) : x X)    


where, X is the universal set.

Upper and lower bounds for any "-cut Ã" are given by
 and  respectively.UA

 LA


Fuzzy number: A fuzzy set in R is called a fuzzy number if it
satisfies the following conditions:

C A is convex and normal
C A" is a closed interval for every 0 (0, 1]
C Support of is bounded

Triangular fuzzy number (TFN): A fuzzy number Ã = (p, q, r)
is said to be a triangular fuzzy number if its membership
function is given by:

(2)A

x p , if p x q,
q p
r xµ (x) , if q x r,
r q
0, otherwise


  

 
  








Trapezoidal fuzzy number (TrFN): A fuzzy set  = (p, q, r, s)A
on real numbers R is called a trapezoidal fuzzy number with
membership function as follows:

(3)A

0, if x p,
x p , if p x q,
q pµ (x)
s x , if r x s,
s r
0, if s x


   
 

 
   






PROBLEM FORMULATION

Ki et al.17 suggested a stratified RR technique that applied
the same randomization device to every stratum. Stratified
random sampling is generally obtained by dividing the
population into two over lapping groups called strata and
selecting a simple random sample from each stratum. An RR
technique using a stratified random sampling gives the group
characteristics related to each stratum estimator. Also,
stratified sample protect a researcher from the possibility of
obtaining a poor sample. Under Ki et al.17 proportional
sampling assumption, it may be easy to derive the variance of
the proposed estimator; however, it may cause a high cost
because of the difficulty in obtaining a proportional sample
from some stratum. To rectify this problem, Kim and Warde15

present a stratified randomized response  technique  using  an
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optimal allocation which is more efficient than a stratified
randomized response technique using a proportional
allocation. Singh and Tarray7 developed a stratified
randomized response models designated as SRRT1 which is
described below:

SRRT1: In this procedure, an individual respondent in a
sample from each stratum is provided with one randomized
response device. It consists of the statement “I belong to the
sensitive group” with known probability Pi, exactly the same
probability as used by Kim and Warde15 and the statement
“Yes” with probability (1-Pi). The interviewee is instructed to
use the device and report “Yes” or “No” for the random
outcome of the sensitive statement according to his actual
status. Otherwise, it is simply requested to report the “Yes”
statement observed on the randomized response device. The
whole procedure is completed by the respondent, unobserved
by the interviewer. A respondent belonging to the sample in
different  strata  will  perform  different  randomization
devices, each having different pre-assigned probabilities. The
probability of a "Yes" answer in a stratum i for this procedure
is:

θ1i = PiπSi+(1-Pi),  for (i = 1, 2..., k ) (4)

where, 21i is the proportion of “Yes” answers in a stratum i, πSi
is the proportion of respondents with the sensitive trait in a
stratum i and Pi is the probability that a respondent in the
sample stratum i has a sensitive question.

The maximum likelihood estimate of πSi in this procedure
will be:

(5)1i i
1Si

i

ˆ (1 P )ˆ , for (i 1, 2,..., k)
P

  
  

where,  is the proportion of "Yes" answer in a sample in the1î
stratum i. Since each  is a binomial distribution 1î i 1i

ˆB (n , )
and the selections in different strata are made independently,
the maximum likelihood estimate of  is easily

k

S i Si
i 1

w


  
shown to be:

k k
1i i

1S i 1Si i
i 1 i 1 i

ˆ (1 P )ˆ ˆw w
P 

   
    
  

 

where they denote N to be the number of units in the whole
population,  Ni  to  be  the  total  number  of  units  in  the
stratum i and wi = (Ni/N) for ( i = 1, 2,...k) so that 

k

i
i 1

w w 1.


 

As  each  estimator    is  unbiased  for  πSi  the  expected1Sî

value for  the expected value of  is:Ŝ , 1Ŝ

(6) 
k k k

1S i 1Si i 1Si i Si S
i 1 i 1 i 1

ˆ ˆ ˆ ˆE( ) E w w E w
  

 
          

 
  

Since each unbiased estimator  has its own variance,1Sî

the variance of is:1Ŝ

(7)
k

1S i 1Si
i 1

ˆ ˆV( ) V w


 
    

 


(8)
k

2
i 1Si

i 1

ˆw V ( )


 

(9)
2k

i Sii
Si Si

i 1 i i

(1 P )(1 )w (1 )
n P

   
    

  


Or:

(10)
2k
i

S i2
i 1 i

wˆV ( ) {A }
n

  

To find the optimum allocation we either maximize the
precision for fixed budget or minimize the cost for fixed
precision. A linear cost function which is an adequate
approximation of the actual cost incurred will be

The linear cost function is:

(11)
k

0 i i
i 1

C C c n


 

where, C0 is the over head cost, ci is the per unit cost of
measurement in ith stratum, C is the available fixed budget for
the survey.

In view of Eq. 4 and 11, the problem of optimum
allocation can be formulated as a non linear programming
problem (NLPP) for fixed cost as:

(12)

2k
i

S i
i 1 i

k

i i 0
i 1

i i i

wˆMinimize V ( ) A
n

Subject to c n c

1 n N and n int egers,i 1, 2,...k






  


 

   






The restrictions 1<ni and ni<Ni are placed to have the
representation of every stratum in the sample and to avoid the
oversampling, respectively.
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FUZZY FORMULATION

Generally, real-world situations involve a lot of parameters
such as cost and time, whose values are assigned by the
decision makers and in the conventional approach, they are
required to fix an exact value to the aforementioned
parameters. However, decision-makers frequently do not
precisely know the value of those parameters. Therefore, in
such cases it is better to consider those parameters or
coefficients in the decision-making problems as fuzzy
numbers. The mathematical modeling of fuzzy concepts was
presented by Zadeh22. Therefore, the fuzzy formulation of
problem (12) with fuzzy cost constraint is given by considering
two cases of fuzzy numbers, that is, triangular fuzzy number
(TFN) and trapezoidal fuzzy number (TrFN).

For triangular fuzzy number (TFN) we consider:

(13)   

2k
i

i
i 1 i

k
1 2 3 1 2 3
i i i i 0 0 0

i 1

i i i

wMinimize A
n

Subject to c , c , c n c , c , c

1 n N and n int egers,i 1, 2,...k








 

   






Where:

(14)i Si
i Si Si

i

(1 P )(1 )
A (1 )

P
   

     
  

And  is triangular fuzzy numbers with 1 2 3
i i i iC c , c , c

membership function:

(15)
i

1
1 2i
i i2 l

i i
3

2 3i
i i3 2C

i i

x c
, if c x c

c c
c x

µ (x) , if c x c
c c
0, otherwise

 
 


   








Similarly, the membership function for available budget
can be expressed as:

(16)
i

1
1 20
0 02 l

i 0
3

2 30
0 03 2C

0 0

x c
, if c x c

c c

c x
µ (x) , if c x c

c c
0, otherwise

 
 


   








and for trapezoidal fuzzy number (TrFN) we consider:

(17)   

2k
i

i
i 1 i

k
1 2 3 4 1 2 3 4
i i i i i 0 0 0 0

i 1

i i i

wMinimize A
n

Subject to c , c , c , c n c , c , c , c

1 n N and n int egers, i 1, 2,...k








 

   






Where:

(18)i Si
i Si Si

i

(1 P )(1 )
A (1 )

P
   

     
  

and  is trapezoidal fuzzy numbers with 1 2 3 4
i i i i iC c , c , c , c

membership function:

(19)
i

1
i

1
1 2i
i i2 1

i i
2 3
i iC

4
3 4i
i i4 3

i i
4
i

0, if x c ,

x c , if c x c ,
c c

(x) 1, if c x c ,

c x , if c x c ,
c c

0, if c x

 


      
   
 






Similarly, the membership function for available budget
can be expressed as:

(20)
0

1
0

1
1 20
0 02 1

0 0

2 3
0 0C

4
3 40
0 04 3

0 0

4
0

0, if x c ,

x c
, if c x c ,

c c

(x) 1, if c x c ,

c x
, if c x c ,

c c

0, if c x

 


      
   
 






LAGRANGE MULTIPLIERS FORMULATION

Let us now determine the solution of problems (13) by
ignoring upper and lower bounds and integer requirements
the NLPP with TFNs is solved by Lagrange multipliers
technique (LMT).

The Lagrangian function may be:

 (21)     
2k k

(1) (2) (3) (1) (2) (3)i
h i i i i i 0 0 0

i 1 i 1i

w(n , ) A c , c , c n c , c , c
n 

 
      

  
 

Differentiating Eq. 21 with respect to ni and λ and
equating to zero, we get the following sets of equations:
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A
L~ A

U~r sq p

µ  (x)A
~

1



 x

(22) 
2

(1) (2) (3)i
i i i i i2

hi

wV 0 n {A } c , c , c
nVn


    

Or:

(23) 
i

i (1) (2) (3)
i i i

{A }1n
c , c , c




Also:

(24)   
k

(1) (2) (3) (1) (2) (3)
i i i i 0 0 0

i 1

V c , c , c n c , c , c 0
V 

      
   



Which gives:

(25)     
k

(1) (2) (3) (1) (2) (3)i
i i i i 0 0 0(1) (2) (3)

i 1 i i i

{A }w c , c , c c , c , c 0
c , c , c

 




Or:

(26)
 

 

(1) (2) (3)
0 0 0

k
(1) (2) (3)

i i i i i
i 1

c , c , c1

w {A } c , c , c



 

Substituting Eq. 23 in Eq. 26, we have:

(27)
   

 

(1) (2) (3) i
0 0 0 i (1) (2) (3)

i i i

i k
(1) (2) (3)

i i i i i
i 1

*

{A }c , c , c , w
c , c , c

n
w {A } c , c , c







In similar manner, the optimum allocation of NLPP Eq. 17
with trapezoidal fuzzy number can be obtained as follows:

(28)
   

 

(1) (2) (3) (4) i
0 0 0 0 i (1) (2) (3) (4)

i i i i

i k
(1) (2) (3) (4)

i i i i i i
i 1

*

{A }c , c , c , c , w
c , c , c , c

n
w {A } c , c , c , c







To convert fuzzy allocations into a crisp allocation by-cut
method.

PROCEDURE FOR CONVERSATION OF FUZZY NUMBERS

The fuzzy allocations into a crisp allocation by "-cut
method let Ã = (p, q, r) be a TFN. An "-cut for Ã, Ã"  computed
as:

Lx p A x (q p) p
q p 


       




and:

(29)Ur x A x r (r q)
r q 


       




where,   is the corresponding "-cut as shown inL UA A , A  
   

  

Fig. 1. The allocation obtained in Eq. 27 is in the form of
triangular fuzzy number, therefore by using Eq. 29 the
equivalent crisp allocation is given by:

(30)
     

  

(3) (3) (2) i
0 0 0 i (1) (2) (1)

h h h

i k
(1) (2) (1)

i i h h h
i 1

*

{A }c c c , w
c c c

n
w {A } c c c



 
 


 

Similarly,  let  Ã  =  (p,  q,  r,  s)  be  a  TrFN.   An   "-cut   for
Ã, Ãα  computed as:

Lx p A x (q p) p
q p 


       




And:

(31)Us x A x s (s q)
s q 


       




where,  is the corresponding "-cut as shown inL UA A A,  
   

  

Fig. 2. The allocation obtained in Eq. 30 is in the form of
triangular fuzzy number, therefore by using Eq. 31 the
equivalent crisp allocation is given by:

(32)
     

  

(4) (4) (3) i
0 0 0 i (1) (2) (1)

h h h

i k
(1) (2) (1)

i i h h h
i 1

*

{A }c c c , w
c c c

n
w {A } c c c



 
 


 

Fig. 1: Triangular fuzzy number with an "-cut
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A
L~ A

U~r sq p

µ  (x)A
~

1



 x

The allocations obtained  by  Eq.  30  and  Eq.  32  provide
the solution to NLPP Eq. 13 and 17 if it satisfies the restriction
1<ni<Nh,  i = 1, 2,..., k.  The  allocations  obtained   in   Eq.  30
and 32 may not be integer allocations, so to get integer
allocations, round off the allocations to the nearest integer
values. After rounding off we have to be careful in rechecking
that  the  round-off  values  satisfy  the  cost constraint. Now
we further discuss equal and proportional allocations as
follows:

Equal allocation: In this method, the total sample size is
divided  equally  among  all  the  strata,  that  is,  for  the  th
Stratum:

(33)i
nn
k



where, can be obtained from the cost constraint equation as
follows:

(34)     
k

(1) (2) (1) (4) (4) (3)
i i h h h i 0 0 0

i 1
w {A } c c c n c c c



    

ni%wi

Or:

ni = nwi (35)

Now substituting the value of ni in Eq. 34, we get:

(36)
  
  

(4) (4) (3)
0 0 0

i k
(1) (2) (1)
h h h h

i 1

N c c c
n

c c c N


 


 

Proportional allocation: This allocation was originally
proposed by Bowley23. This procedure of allocation is very
common in practice because of its simplicity. When no other
information  except  Ni,  the  total  number  of  units  in  the   ith

Fig. 2: Trapezoidal fuzzy number with an "-cut

stratum, is available, the allocation of a given sample of size n
to different strata is done in proportion to their sizes, that is, in
the ith stratum:

(37)i
i

Nn n
N



NUMERICAL ILLUSTRATION

A hypothetical example is given to illustrate the
computational   details   of   the   proposed   problem.   Let    us
suppose the population size is 1000 with total available
budget of the survey as TFNs and TrFNS are (3500, 4000, 4800)
and (3500, 4000, 4400, 4600) units, respectively. The other
required relevant information is given in Table 1. By using the
value of Table 1, it was computed the values of Ai which is
given in Table 2.

After substituting all the values  from  Table  1  and  2  in
Eq. 13, the required FNLLP is given as:

     (38)

S
1 2

1 2

1

2

0.02495672 0.13331246ˆMinimize V ( )
n n

Subject to (1, 2, 4) n (18, 20, 24)n (3500, 4000, 4800)
1 n 300
1 n 700


   

  
  
  

The required optimum allocations for problem (Eq. 13)
obtained by substituting the  values  from  Table  1  and  2  in
Eq. 30 at " = 0.5 will be:

1
(4800 800 )0.3 (0.2772969) / ( 1)n

0.3 (0.2772969)( 1) 0.7 (0.2716829)(2 18)
   


    

2
(4800 800 )0.7 (0.2716829) / (2 18)n

0.3 (0.2772969)( 1) 0.7 (0.2716829)(2 18)
   


    

In  similar  manner,   optimum   allocation   for   problem
(Eq. 17) obtained by substituting the values from Table 1 and
2 in Eq. 32 at " = 0.55 will be:

1
(3750)0.3 (0.2772969) / ( 1)n

0.3 (0.2772969)( 1) 0.7 (0.2716829) / (2 18)
 


    

2
(4400 200 )0.7 (0.2716829) / (2 18)n

0.3 (0.2772969)( 1) 0.7 (0.2716829)(2 18)
   


    

The values of Xi, Ai and  are calculated as given in2
i iA w

Table 2.
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1 2 3
h h h(c ,c ,c )

Z = 0.0008320149
n  = 3001

n = 177.7782 

Z = 0.0008322043
n = 2961 
n  = 178 integer solution found2

Z = 0.0008353055
n = 3001 
n  = 177 integer solution found2

R (n 178)3 2>R (n 177)      2 2<

R1

1 2 3
0 0 0(c ,c ,c )

2
i iA w

Fig. 3: Various nodes of NLPP

Table 1: Stratified population with two strata
Stratum (i) Ti wi πY πSi Pi
1 0.495 0.3 0.91 0.48 0.9 (1,2,4) (1,2,4,7)
2 0.95 0.7 0.91 0.53 0.1 (18,20,24) (18,20,24,26)

Table 2: Calculated values of Ai and 2
i iA w

Stratum (i) Xi Ai
1 0.501715 0.272969 0.0249572
2 0.5471 0.2716829 0.1331246

Table 3: Calculated values of optimum allocation and variance
Case n1 n2 Variance
LMT (optimum allocation)
TFN 318.15 271.00 0.000569678
TrFN 206.4617 201.76 0.000780694

Applying the "-cut and LMT, the optimum allocation after
is obtained and summarized in Table 3 for both the cases i.e.,
case of TFN and case of TrFN with variance as24-25:

Case-I:

S
1 2

1 2

1

2

0.02495672 0.1331246ˆMinimize V( )
n n

sujbect to (1)n (18)n (3500)
1 n 300
1 n 700

   
  
  
  

Using the above minimization problem, we get optimal
solution as n1 = 300, n2 = 177.778 and optimal value is
Minimize V(π8S) = 0.0008320149.

Since n1 and n2 are required to be the integers, we branch
problem R1 into two sub problems R2 and R3 by introducing
the constraints n2<177 and  n2>178  respectively  indicated  by
the value n1 = 300 and n2 = 177 and n1 =296 and n2 = 178.
Hence the solution is treated as optimal. The optimal value is
n1 = 296 and n2 = 178  and  optimal  solution  is  to  minimize
V (π8S) = 0.0008320149. It may be noted that the optimal
integer values are same as obtained by rounding the ni to the
nearest integer. Let us suppose V (π8S) = Z, the various nodes
for the NLPP utilizing case-I, are presented in Fig. 3.

Case-II:

S
1 2

1 2

1

2

0.02495672 0.1331246ˆMinimize V( )
n n

sujbect to (2)n (20)n (4000)
1 n 300
1 n 700

   
  
  
  

Using the above minimization problem, we get optimal
solution as n1 = 240.86, n2 = 175.91 and optimal value is
Minimize V (π8S) = 0.0008603746.

Since n1 and n2 are required to be the integers, so
problem R1 is further branched into sub problems R2; R2; R4 and
R5 with additional constraints as n1<240 ; n1>241 ; n2<175 and
n2>176; respectively. Problems R2, R4 and R5 stand fathomed as
the optimal solution in each case is integral in n1 and n2.
Problem R3 has been further branched into sub problems R4
and R5 with additional constraints as n1<175 and n1>176;
respectively which suggests that R6 is fathomed and R7 has no
feasible solution. The optimal value is n1 = 240 and n2 = 136
and optimal solution is to Minimize V (π8S) = 0.0008603761. Let
us suppose V (π8S) = Z, the various nodes for the NLPP utilizing
case-II, are presented in Fig. 4.

Case-III:

S
1 2

1 2

1

2

0.02495672 0.1331246ˆMinimize V( )
n n

sujbect to (4)n (24)n (4800)
1 n 300
1 n 700

   
  
  
  

Using the above minimization problem, we get optimal
solution as n1 = 180.25, n2 = 170 and optimal value is Minimize
V (π8S) = 0.0009217340.

9
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Z = 0.0008605389
n = 2501 
n  = 175 integer solution found2

Z = 0.0008603761
n = 2401 
n  = 136 integer solution found2

 Z = 0.0008603746 
 n = 240.861 
 n = 175.912 

R1

Z = 0.0008603761
n = 2401 
n  = 176 integer solution found2

R (n 240)  2 1< R (n 241)  3 1> R (n 175)4 2< R (n 176)5 2>

Z = 0.0008603746
n = 2411 
n = 175.92 

Z = 0.0008605389
n = 2501 
n  = 175 integer solution found2

No feasible olution ounds f

R (n 175)   6 2< R (n 176)7 2>

Z = 0.0009217340
n = 180.251 
n = 1702 

Z = 0.0009218954
n = 1861 
n  = 169 integer solution found2

No feasible olution ouns f d

R (n 169)4 2< R (n 170)5 2>

R (n 180)     2
1< R (n 181)3 1>

R1

Z = 0.0009217368
n = 1811 
n = 169.58332 

Z = 0.0009217343
n1= 180
n2= 170 integer solution found

Fig. 4: Various nodes of NLPP

Fig. 5: Various nodes of NLPP

Since n1 and n2 are required to be the integers, so
problem R1 is further branched into sub problems R2 and R3
with additional constraints as n1<180 ; n1>181, respectively.
Problems R2 stand fathomed as the optimal solution in each
case is integral in n1 and n2. Problem R3 has been further
branched into sub problems R4 and R5 with additional
constraints as n2<169 and n2>170; respectively. R4 is fathomed
and R5 has no feasible solution. Hence the solution is treated
as optimal. The optimal value is n1 = 180.25 and n2 = 170 and
optimal solution is to Minimize V (π8S)= 0.0009217340. Let us
suppose V (π8S) = Z, the various nodes for the NLPP utilizing
case-III, are presented in Fig. 5.

In both  the  three  cases  we  find  that  the  optimal  value
n1 = 296 and n2 = 178  and  optimal  solution  is  to  Minimize
V (π8S)= 0.0008320149.

DISCUSSION

A stratified randomized response method assists to solve
the limitations of randomized response that is the loss of
individual characteristics of the respondents. The optimum
allocation problem for two-stage stratified random sampling
based on Singh and Tarray7 model with fuzzy costs is
formulated as a problem of fuzzy nonlinear programming
problem. The problem is then solved by using Lagrange
multipliers technique for obtaining optimum allocation. The
optimum allocation obtained in the form of fuzzy numbers is
converted into an equivalent crisp number by using "-cut
method at a prescribed value of ".

For practical purposes we need integer sample sizes.
Therefore, in instead of rounding off  the  continuous  solution,
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we have obtained integer solution, by formulating the
problem as fuzzy integer nonlinear programming problem
and obtained the integer solution by LINGO software.
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