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Abstract
In this study basic analogue of double Sumudu transform of functions expressible as polynomials or convergent series are derived. The
applicability of this relatively new transform is demonstrated using some special functions, which arise in the solution of evolution
equations of population dynamics as well as partial differential equations.
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INTRODUCTION

The theory of Sumudu transform, meant for functions of
exponential order is applicable for many applications in
mathematics (ordinary and partial differential equations) and
control engineering problems. Watugala1 extended the
transform  to  functions  of  two  variables with emphasis on
solutions to partial differential equations, which is slightly
different from ours. The aim of this paper was to derive, the
basic analogue of the double Sumudu transform. Thus, this
new transform has very special and useful properties, which
can help to intricate applications in sciences and engineering
as believed its double transform will also be a natural choice
in solving problems with scale and units preserving
requirements. Therefore, our aim is to apply the basic
analogue of the double Sumudu transform to the age and
physiology-dependent population dynamic problem2.

Integral transforms in the classical analysis are the most
widely used to solve differential equations and integral
equations. A lot of study has been done on the theory and
application of integral transforms3,4. Most popular integral
transforms are due to Laplace, Fourier, Mellin and Hankel.
Most popular integral transforms are due to Laplace, Fourier,
Mellin and Hankel. Originally, the Sumudu transform was
proposed by Watugala5 as follow: 
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It is applied to the solution of ordinary differential
equations in control engineering problems. Subsequently,
Weerakoon6 gave the Sumudu transform of partial derivatives
and the complex  inversion transform who has applied it to
the solution of partial differential equations. Basically, the
Sumudu transform is not a new integral transform but simply
s-multiplied Laplace transform, providing the relation
between them7,8. The Sumudu transform is itself linear and
preserves  linear  properties9.  In  recent  past   the   theory  of
q-analysis, have been applied in the many areas of
mathematics and physics like ordinary fractional calculus,
optimal control problems, q-transform analysis, geometric
functional   theory  in  finding  solutions of the q-difference
and   q-integral   equations 10-13.  Albayrak  et al.14   introduced

the q-analogues of the Sumudu transform and established
several theorems related to q-Sumudu transform of some
functions. The convolution theorem for q-Sumudu transform
has been introduced by Albayrak et al.14. The reader is
expected to be familiar with notations of q-calculus. It start
with basic definitions and facts from the q-calculus which is
necessary for understanding of this study. In this sequel, It
assumed    that      q      satisfies      the     condition     0<|q|<1.
q-exponentials have the properties:
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The subject deals with the investigations of q-integrals
and q-derivatives of arbitrary order and has gained
importance due to its various applications in the areas like
ordinary calculus, solutions of the q-differential and q-integral
equations, q-transform analysis15-18. The q-integrals are defined
as Jackson19:
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The q-analogues of Sumudu transform are defined as
follows20:
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Double sumudu transform: Let f (t, x), t, x 0 R+ be a function
which can be expressed as a convergent infinite series, then its
double sumudu transform is given by Tchuenche and Mbare2:
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Definition 1: The q-analogue of the double Sumudu transform
is defined as:
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where, u and v are the transform variables for t and x,
respectively.

RESULTS

Theorem 1: Let f (t, x), t, x 0 R+ be a real valued function, then:
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The case f (x!y) is more interesting from the biological
point of view where such functions are frequently used in
mathematical  biology  with  f  representing  the population
density, x the age and y the time or vice-versa. The proof for
the case x>y simple and sound enough but with a tedious
manipulation. We limit ourselves to the first quadrant as
negative populations are biologically irrelevant. Thus,
geometrically if the line separating the first quadrant into two
equal parts represents the η-axis (the lower part being
represented by Q1 and the upper part Q2, while that
separating  both  the  second  and  fourth quadrants
represents the ζ-axis (arrow pointing upwards) and -axis
(arrow  from   origin   into   the   fourth    quadrant)
respectively, then the proof is as follows:

Let f be an even function, then:
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changing variables and applying Fubini’s theorem let:
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Similarly:
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hence (3) becomes:
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and for odd functions:
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from Eq. 1 and 3, it is obvious that if f is even function. Then:
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Lemma 1.1: Let f and g be two real valued functions
satisfying3, then:
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where, a and b are positive constants:
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Corollary 1.2:
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The proof is simple by rewriting the left hand side of the
equations as:
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and performing the integrations, bearing in mind that H
satisfies Fubini’s Theorem. The application of the basic
analogue to double Sumudu transform to partial derivatives
is as follows:
Let:

F(0,a) = 0 F (a) (4)
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alternatively:
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where, Fq(u, 0) = 0Fq(u) and Fq(0,v) = 0Fq(v). It is obvious from
Eq. 5 and 6 that:
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If u and v are equal, we obtain a special case of the Basic
analogue of double Sumudu transform known as iterated
sumudu transform. Thus, the basic analogue of iterated
Sumudu transform of any given function of two variables is
defined by:
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APPLICATIONS

In this phase, the validity of the basic analogue of the
double  Sumudu  transform  is applied to an evolution
equation of population dynamics, namely the famous
Kermack-Mackendrick Von Fo- erster type model. Let f be the
population density of individuals aged a at time t, λ the death
modulus. Then population evolves according to the following
system:

ft+fa+λ(a)f

where:

f(0,a) = f0(a) (7)

f(t,0) = B(t)

taking the q-double Sumudu transform of Eq. 7 with u, v as the
transform variables for t, a, respectively after some little
arrangements, we get:

(8) 
   

     
0 0

q 2
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In order to find the inverse of basic analogue of double
Sumudu  transform  of  Eq.  8,  which it  assumed it exists and
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satisfies conditions of existence of the double Laplace
transform, the proceed as follows.

Let the right-hand side of Eq. 8 be written as:
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Then, taking the inverse of basic analogue of double
Sumudu transform of (8) using Corollary (1.2) and Lemma
(1.1), we have:
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(9)   2 2a t
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It obtained an approximate solution but it is important to
note here that the survival function e-q λ a does not disappear
as in Tchuenche21. Thus, in order to obtain for instance e-q λ a,
it assumed without loss of reality that u = 1 in the expansion,
which  gives  us   an   approximation,   hence   the  inequality
in (9).

CONCLUSION

The  results  proved  in  this  study give some
contributions  to   the   theory  of  integral  transforms 
especially q-Sumudu transform and are applicable to the
theory of population dynamics. The results proved are
believed  to  be  new  to  the  theory  of q-calculus and are
likely   to    find   certain   applications   to   the   solution   of 
the  q-integral  equations  involving   various   special
functions.
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