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Abstract
Background and Objective: Fibonacci sequence is a sequence of positive integers that has been studied over several years. The aim of
this paper was to suggest new generalized Fibonacci sequence to a particular class of recursive sequence. Materials and Methods: The
equilibrium point of the model was investigated and a new sequence. The matrix method was applied to perform the generalization.
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INTRODUCTION

The Fibonacci sequence is a series of numbers in which a
number is found by adding the two numbers before it. Initially
with 0 and 1, the sequence starts from 0, 1, 1, 2, 3, 5, 8... by the
rule the expression is Xn = Xn-1+Xn-2 which was named after
Fibonacci also known as Leonardo of Pisa or Leonardo Pisano
and first introduced by Liber abaci in 1202. Knowledge of
numbers is said to have first originated in the Hindu-Arabic
arithmetic system, which Fibonacci studied  while  growing 
up  in  North  Africa.  The well-known Fibonacci sequence is a
sequence of positive integers that has been studied over
several years. The most and vast research field of Fibonacci 
numbers  is  defined  to  study the  generalizations  of 
Fibonacci  numbers  Bilgici1 and Tasyurdu et al.2. The main aim
of the present paper is to study other generalized Fibonacci
sequence by matrix methods.

Horadam3 introduced and studied the generalized
Fibonacci sequence Wn = Wn(a,b;p,q) defined by:

Wn  = PWn-1-qWn-2, n>1, W0 = aW1 = b

where, a, b, p and q are arbitrary complex numbers with q…0.
These numbers were first studied by Horadam3 and are called
Horadam numbers. In Silvester4, it has been shown that a
number of the properties of the Fibonacci sequence can be
derived from a matrix representation. In doing so, it showed
that if:
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where, un represents the nth Fibonacci number. In Koken and
Bozkurt obtained some important properties of Jacobsthal
numbers by matrix methods, using diagonalization of a 2×2
matrix to obtain a Binet’s formula for the Jacobsthal numbers
and in that study, 2×2 matrix and its nth power are defined
respectively as:
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where, Jn is the nth Jacobsthal number. In Demirturk5 obtained
summation formulae for the Fibonacci and Lucas sequences
by matrix methods. For doing this, it considered 2×2 matrix
such as:
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where, Fn and Ln are nth Fibonacci and Lucas numbers
respectively. The authors presented some important
relationship between k-Jacobsthal matrix sequence and k-
Jacobsthal-Lucas matrix sequence and k is the positive real
number6. In Godase and Dhakne7 described some properties
of k-Fibonacci and k- Lucas number by matrix terminology. To
obtain such properties , the authors 2×2 matrix such as:
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where, k is the fixed positive real number. Catarino and Vaso8

obtained 2×2 matrix for the k-Pell sequence with in nth
power and Catarino9 presented Binet’s formula for the k-Pell
sequence by the diagonalization of  2×2 matrix. In both
studies of Catarino9 and Ugyun and Eldogm6 defined  2×2
matrix as such as:
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and:
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where, Pk,n is the nth k-Pell number. Again in Catarino and
Vaso8 study, 2×2  matrix  they  have  obtained  Binet’s  
formulae   for  the k-Pell-Lucas sequence by the matrix
diagonalization and also obtained some properties of k-Pell
Lucas sequence with the help of a 2×2 matrix as such as:
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where, Qk,n is the nth k-Pell Lucas  number.  Borges  et al.10

have used the same concept as in Catarino9 and studied k-Pell-
Lucas sequence by matrix methods.

Preliminaries: In the study of Catarino9  for  the  positive  real 
number  the k-Pell sequence {Pk,n} is defined by the recurrence
relation:

Pk,n+1 = 2Pk,n+kPk,n-1, n>1, Pk,0 = 0, Pk,1 = 1 (1)

Again in the study of Catarino9, the  positive  real  number 
k  the k-Pell-Lucas sequence {Qk,n} is defined recurrently by:

Qk,n+1 = 2Qk,n+kQk,n-1, n>1, Qk,0 = 2, Qk,1 = 2 (2)

The sequence of Eq. 1 and 2 have the same characteristics
equation x2-2x-k = 0 and let a and b are the roots of the
characteristic equation. The well-known general forms of both
sequences known as Binet’s Formulae are given and written
by:
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and Qk,n = an+bn  where,  and .a 1 1 k   b 1 1 k  
The main aim of this paper was to study other generalized

Fibonacci sequences by matrix methods.

MATERIALS AND METHODS

Definition: For the positive real number k, the generalized
Fibonacci sequence, say Sk,n defined by:

Sk,n+1 = 2Sk,n+kSk,n-1, n>1, Sk,0 = 1, Sk,1 = 1 (3)

Clearly x2-2x-k = 0 is also the characteristic equation of the
sequence (Eq. 3). It produces two roots as:
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Also the 2×2 matrix called generating matrix for the
sequence (Eq. 3) is defined as:
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RESULTS

Theorem 1: Binet Formulae for the generalized Fibonacci
sequence:
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Proof: The general form for the generalized Fibonacci
sequence may be expressed in the form:

Sk,n = Aan+Bbn

where, A and B are constants that can be determined by the
initial conditions. So put the values n = 0 and n = 1 in Eq. 3, we
get: A+B = 1  and  Aa+Bb = 1.

After solving the above system of equations for A and b,
we get:
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A and B

a b a b

 
 

 

20



Asian J. Math. Stat., 11 (1): 18-26, 2018

Therefore:
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And by Eq. 4, we have:
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This proves the first part of the theorem.
Now if we consider Eq. 4 and above proof, we get:
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This proves the second part of the theorem.

Theorem 2: for n0N, we have:
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Proof: To prove this we will use Eq. 6, 7, 1 and 3:
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which proves Eq. 8.
Now:
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Theorem 3: the nth power of the generating matrix. for n0N,
we have:
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Proof:    Here    we    shall    use    induction    on    n.    Indeed
Eq.   10  is  true  for  n  =  1.   Now   suppose    that   Eq.   10 is 
true   for  n.  let  us  show  that   the    result  is  true  for n+1,
then:
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as required.

Theorem 4: (Cassini’s Identity) for n0N, we have:
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Proof: To prove the ongoing result we shall use introduction
on n. indeed the result is true for n = 1. Suppose that the result
is true for n, then:
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(14)
k,n 2 k,n 1 k,n k,n 1

k,n 1 k,n 1 k,n

S 2S kS S2 k

S S 1 0 S
  

 

      
       

           

as desired.

Theorem 6: For n>0, we get:

(15)
k,n 1 k,1n

k,n k,0

S S
S

S S
   

   
      

Proof: To prove the ongoing result we shall use induction on
n. indeed the result is true for n = 0, suppose that the result is
true for n then:

n 1
k,1

k,0

n
k,1

k,0

S2 k

1 0 S

S2 k 2 k

1 0 1 0 S

   
  
    

    
     

      

Since the result is true for n then:

n 1
k,1

k,0

k,n 1

k,n

k,n 1 k,n

k,n 1

k,n 2

k,n 1

S2 k

1 0 S

S2 k

1 0 S

2S kS

S

S

S













  
  
    
  

   
    
 

  
  
 

  
  

as desired.

Binet’s formula by matrix diagonalization of generating
matrix: Use the diagonalization of the generating matrix (Eq.
5) to obtain Binet’s formula for the generalized Fibonacci
sequence (Eq. 3). For this purpose we should prove the
following theorem:

Theorem 6: For n>0, we get:

(16)n 1 n 1 n n
k,n

1
S (a b ) (a b )

a b
      

Proof: The generating matrix is given by:

2 k
S

1 0

 
  
 

now here our motive is to diagonalize the generating matrix
S. Since S a square matrix and so let x be the eigen value of S
and then by the Cayley Hamilton theorem on matrix, we get:

2

| S xI | 0

2 x k
0

1 x

x 2x k 0

 






  

This is the characteristic equation of the generating
matrix. Let a and b be the roots of the characteristic equation
and also a and b are two eigen values of the square matrix S.
Now we will try to find the eigen vectors corresponding to the
eigen values a and b. to find the eigen vectors we simply solve
the system of linear equations given by:

|S-xI|V = 0

where, V is the column vector of order 2×1. First of all we
calculated the eigen vectors corresponding to the eigen value
of a and then:

1

2

1 1 2

1 2

| S aI | V 0

V2 a k
0

1 a V

2V aV V k
0

V aV

 

   
     

  
  

Consider the system:

1 2

1 2

(2 a)V kV 0

V aV 0

  
 

And if we take V2 = t in (17) , we get, V1 = at. Hence the
eigen vectors corresponding to a are of type:

at

t

 
 
 

In particular t = 1, the eigen vector corresponding to a are of
type:

a

1

 
 
 

Similarly the eigen vector corresponding to b is:

b

1

 
 
 
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Let A be the matrix of eigenvectors:

a b
A

1 1

 
  
 

so and then:

1 1 1 b
A (a b)

1 a
   
    

Now we keep the diagonal matrix D in which eigen values of
S are on the main diagonal:

a 0
D

0 b

 
  
 

and then by the diagonalization of matrix, we get:

1

n 1 n

n 1

n
1

n

n 1 n 1
1

n n

n 1 n 1 n 1 n 1
1

n n n n

S ADA

S (ADA )

AD A

a b a 0 1 b
(a b)

1 1 1 a0 b

a b 1 b
(a b)

1 aa b

a b ba ab
(a b)

a b ba ab









 


   








     
           

   
         

   
   

    

By using Eq. 15, we have:

k,n 1 k,1n

k,n k,0

1

n 1 n 1 n 1 n 1

n n n n

S S
S

S S

(a b)

a b ba ab 1

1a b ba ab





   

   
   

      
 

     
   

      

Let  and using a+b = 2, wen 1 n 1 n 1 n 1C a b ba ab      

achieve:

k,n 1

k,n

1 n n n

n 1 n n 1

1

n 1 n 1 n n

S

S

C

(a b) a b 2a

a 2b b

C
(a b)

(a b ) (a b )





 


 

 
 
  

 
 

    
    
 

   
   

Therefore, by equating corresponding terms on both
sides we get:

n 1 n 1 n n
k,n

1
S (a b ) (a b )

a b
      

which proves Eq. 16.

Theorem   7:   The   generalized   characteristic   roots   of   Sn

are:

(17)
2 n

k,n k,nn
Q Q 4( k)

a
2

  


and:

(18)
2 n

k,n k,nn
Q Q 4( k)

b
2

  


Proof: if we write the characteristic polynomial of Sn, we
achieve:

n

k,n 2 k,n 1 k,n 1 k,n

k ,n 1 k,n k ,n k ,n 1

2

k,n 2 k,n 1 k,n 1 k,n

k ,n 1 k,n k ,n k ,n 1

2
k,n 2 k,n 1

k,n k ,

S yI

(S S ) (S S )
y k

1 k 1 k
(S S ) (S S )

k y
1 k 1 k

(1 k)

(S S ) (1 k)y k(S S )

(S S ) k(s S ) (1 k)y

(1 k) {[(S S ) (1 k)y]

[k(S S

  

 



  

 


 

 

 


 
 


 

 

   

   

    

 n 1

2
k,n 1 k,n

2
k,n 2 k,n 1

k,n k ,n 1 k,n 2 k,n 1

2 2
k,n k ,n 1

2
k,n 1 k,n

2 2 2

k,n 2 k,n 1 k,n k ,n 1

k,n k

) (1 k)y ]

k(S S ) }

(1 k) {[(S S )

k(S S ) (S S )y(1 k)

ky(1 k)(S S ) y (1 k)

k(S S ) }

(1 k) {y (1 k) y(1 k)

(S S kS kS )

k(S S






 

  







  

 

 

  

   

    

 

    
  

  ,n 1 k ,n 2 k,n 1

2
k,n 1 k,n

2 2 2

k,n k ,n 1 k,n 2 k,n 1

k,n k ,n 1 k,n 2 k,n 1

2
k,n 1 k,n

)(S S )

k(S S ) }

(1 k) {y (1 k) y(1 k)

(kS kS S S )

k[(S S )(S S )

(S S ) ]}

  





  

  





 

    
  

  

 

After  using  equations  Eq.  9,  11  and   13,   we   conclude
that:
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2 2 2

k,n

2
k,n k,n 1 k,n 1

2 2 2 2
k,n

n 1 2

2 2 2 2
k,n

n 2

2 n
k,n

(1 k) {y (1 k) y(1 k)

(1 k)Q

k(1 k)(S S S )}

(1 k) {y (1 k) (1 k) Q y

( k)( k) (1 k) }

(1 k) {y (1 k) (1 k) Q y

( k) (1 k) }

y Q y ( k)



 







    


  

    

   

    

  

   

Hence the characteristic equation of Sn is given by:

2 n
k,ny Q y ( k) 0   

And the generalized characteristic roots are obtained
from:

2 n
k,n k,nQ Q 4( k)

y
2

  


Clearly the above equation has roots given an and bn and
consequently we get the desired results as:

2 n
k,n k,nn

Q Q 4( k)
a

2

  


And:

2 n
k,n k,nn

Q Q 4( k)
b

2

  


Hence the result.

Theorem 8: The characteristic equation of S is:

a-2a-k = 0 (19)

Proof: Here we employ the method of matrices as well as
determinants to obtain the characteristic equation for S. Eq. 10
gives:

n 1

k,n 2 k,n 1 k,n 1 k,n

k,n 1 k,n k,n k,n 1

n
1

k,n 1

k,n 2 k,n 1 k,n 1 k,n

k,n 1 k,n 1

k,n 1 k,n k,n k,n 1

k,n 1 k,n 1

S (1 k)

(S S ) k(S S )

(S S ) k(S S )

S
(1 k)

S

S S k(S S )

S S

S S k(S S )

S S



  

 





  

 

 

 

 

  
 

   

 

  
 
 
  
 
  

Since the ratio of two consecutive generalized Fibonacci
numbers is equal to a, then:

k,n 2 k,n 1

n
k,n 1

k,n 2 k,n 1

n n
k,n 1 k,n 1

k,n 2 k,n 1

n n
k,n 1 k,n

k,n k,n 1 k,n

n n n
k,n 1 k,n k,n 1

3 2

S S
lim

S

S S
lim lim

S S

S S
lim lim

S S

S S S
lim lim lim

S S S

a a

 




 

 
 

 

 




  
 



 





 

and:

k,n 1 k,n

n
k,n 1

k,n 1 k,n

n n
k,n 1 k,n 1

k,n 1 k,n k,n

n n n
k,n k,n 1 k,n 1

2

S S
lim

S

S S
lim lim

S S

S S S
lim lim lim

S S S

a a








 
 



  
 



 

 

 

Again:

k,n k,n 1

n
k,n 1

k,n

n
k,n 1

S S
lim

S

S
lim 1 a 1

S











   

Therefore:

n

n
k,n 1

3 2 2
1

2

n

n
k,n 1

2
1

S
lim

S

a a k(a a )
(1 k)

a a k(a 1)

S
lim

S

(a 1)a ka(a 1)
(1 k)

(a 1)a k(a 1)











  
   

   

  
   

  

If we consider Eq. 4, we have:

2
1

1

(a 1)a ka(a 1)
(1 k)

(a 1)a k(a 1)

(1 k)

(a 1)(2a k) ka(a 1)

(a 1)a k(a 1)





  
  

  
 

   
   
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If we will compute the determinants of both sides, we get,
the characteristic equation of the matrix S as follow:

2

2 2 2 2

2 2

2

0 (1 k)

(a 1) (2ak k ) (a 1) ka

0 2ak k ka

a 2a k 0

 

     
  

  

as required. 

DISCUSSION

The main aim of the present paper was to study
generalized Fibonacci sequence by matrix methods. It has
been shown theoretically that the proposed model is more
efficient than the existing models applying matrix method.
The results obtained in this study are in close agreement with
the previous existing studies11-17.

CONCLUSION

In this study the nth power of generalized Fibonacci
sequence was established and some fundamental properties
of this sequence were attained by matrix methods and
Cassini’s identity and Binet’s formula for the generalized
Fibonacci sequence was achieved.

SIGNIFICANCE STATEMENTS

It has been proposed some important relationship
between k-Jacobsthal matrix sequence and k-Jacobsthal-
Lucas matrix sequence and k is the positive real number.
Godase and Dhakne described some properties of k-Fibonacci
and k- Lucas number by matrix terminology. This study will
help the researchers to uncover the critical areas related to
Fibonacci sequence to a particular class of recursive sequence.
For the future research, researcher can be considering a new
theory for Fibonacci sequence. 

REFERENCES

1. Bilgici, G., 2014. New generalizations of Fibonacci and Lucas
sequences. Applied Math. Sci., 8: 1429-1437.

2. Tasyurdu, Y., N. Cobanoglu and Z. Dilmen, 2016. On the a new
family of k-Fibonacci numbers. J. Sci. Technol., 9: 95-101.

3. Horadam, A.F., 1965. Basic properties of a certain generalized
sequence of numbers. Fibonacci Q., 3: 161-176.

4. Silvester, J.R., 1979. Fibonacci properties by matrix methods.
Math. Gaze., 63: 188-191.

5. Demirturk, B., 2010. Fibonacci and Lucas sums by matrix
methods. Int. Math. Forum, 5: 99-107.

6. Uygun,    S.    and    H.    Eldogan,    2016.    k-Jacobsthal    and
k-Jacobsthal  Lucas  matrix  sequences.   Int.   Math.   Forum,
11: 145-154.

7. Godase, A.D. and M.B.  Dhakne,  2014.  On  the  properties  of
k-Fibonacci and k-Lucas numbers. Int. J. Adv. Applied Math.
Mech., 2: 100-106.

8. Catarino, P. and P. Vasco, 2013. Some basic properties and a
two-by-two matrix involving the k-Pell numbers. Int. J. Math.
Anal., 7: 2209-2215.

9. Catarino,  P.,  2013.  A  note  involving  two-by-two  matrices
of the k-Pell and k-Pell-Lucas  sequences.  Int.  Math.  Forum,
8: 1561-1568.

10. Borges, A., P. Catarino, A.P. Aires, P. Vasco and H. Campos,
2014. Two-by-two matrices involving k-Fibonacci and k-Lucas
sequences. Applied Math. Sci., 8: 1659-1666.

11. Wloch,     I.,    U.       Bednarz,    D.    Brod,     A.     Wloch      and
M. Wolowiec-Musial, 2013. On a new type of distance
Fibonacci numbers. Discrete Applied Math., 161: 2695-2701.

12. Wani, A.A., V.H. Badshah, S. Halici and P. Catarino, 2018. On a
fibonacci-like sequence associated with k-lucas sequence.
Acta Univ. Apulensis, 53: 41-54.

13. Wani, A.A., G.P.S. Rathore, V.H. Badshah and K. Sisodiya, 2018.
A two-by-two matrix representation of a generalized
fibonacci sequence. Hacettepe J. Math. Statist., 47: 637-648.

14. Rathore, G.P.S., A.A. Wani and K. Sisodiya, 2016. Matrix
representation  of  generalized  k-fibonacci   sequence. IOSR
J. Math., 12: 67-72.

15. Wani, A.A., G.P.S. Rathore and K. Sisodiya, 2017. On
generalizedk-fibonacci sequence by two-cross-two matrix.
Global J. Math. Anal., 5: 1-5.

16. Naik, P.A. and K.R. Pardasani, 2018. Three-dimensional finite
element  model  to  study  effect  of   RyR   calcium   channel,
ER  leak   and  SERCA  pump  on  calcium  distribution  in
oocyte cell. Int. J. Comput. Methods, Vol. 15, No. 6.
10.1142/S0219876218500913.

17. Naik, P.A. and K.R. Pardasani, 2014. Finite element model to
study effect of Na+/K+ Pump and Na+/Ca2+ exchanger on
calcium distribution in oocytes in presence of buffers. Asian
J. Math. Stat., 7: 21-28.

26


	ajms2.pdf
	Page 1


