2म $l_t = l_0(1+d)$ Ume R=ps Y(x) = 12/L sin -1 Ju JJ Jas cos C cos Z) Sih (2)+29

Asian Journal of Mathematics & Statistics

ISSN 1994-5418

∂ OPEN ACCESS

Asian Journal of Mathematics and Statistics

ISSN 1994-5418 DOI: 10.3923/ajms.2023.6.8

Research Article Solution of the Surd Diophantine Equation $\sqrt[n]{x} + \sqrt[n]{y} + \sqrt[n]{z} + \sqrt[n]{t} = \sqrt[n]{u}$

¹Hari Kishan, ¹Surya Prakash Gautam and ²Megha Rani

¹Department of Mathematics, Deva Nagri College, Meerut, Uttar Pradesh 250002, India ²Department of Mathematics, Raj Kumar Goel Institute of Technology, Ghaziabad, Uttar Pradesh 201003, India

Abstract

In this study, the Diophantine equation $\sqrt[n]{x} + \sqrt[n]{y} + \sqrt[n]{z} + \sqrt[n]{t} = \sqrt[n]{u}$ has been discussed for some positive integral values of n and for rational numbers of the form $n = \frac{2}{p}$, p is a prime number. Integral solutions of Diophantine equation have been obtained for $n = 2, 3, 4, \frac{2}{3}$ and $\frac{2}{5}$.

Key words: Diophantine equation, surd equation, rational number, general solution and integral solution

Citation: Kishan, H., S.P. Gautam and M. Rani, 2023. Solution of the surd diophantine equation $\sqrt[n]{x} + \sqrt[n]{y} + \sqrt[n]{z} + \sqrt[n]{t} = \sqrt[n]{u}$. Asian J. Math. Stat., 16: 6-8.

Corresponding Author: Hari Kishan, Department of Mathematics, Deva Nagri College, Meerut, Uttar Pradesh 250002, India

Copyright: © 2023 Hari Kishan *et al.* This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

INTRODUCTION

Wiles¹ proved Fermat's Last Problem (Theorem) successfully which was published in 1995. Gopalan *et al.*² discussed the generalized Fermat equation $x^{2a+1}+y^{2a+1} = z^{2a}$. Sarita *et al.*³ discussed the Diophantine equation $\sqrt[n]{x+n}y = \sqrt[n]{z}$.

In this research, the Diophantine equation $\sqrt[n]{x} + \sqrt[n]{y} + \sqrt[n]{z} + \sqrt[n]{t} = \sqrt[n]{u}$ has been discussed. This is some sort of extension of the paper of Sarita *et al.*³.

Analysis: The problem has been discussed in the following cases:

Case 1: For n = 2, the Diophantine equation under consideration reduces to:

$$\sqrt[2]{\mathbf{x}} + \sqrt[2]{\mathbf{y}} + \sqrt[2]{\mathbf{z}} + \sqrt[2]{\mathbf{t}} = \sqrt[2]{\mathbf{u}}$$
(1)

Putting $x = (a^2-b^2-c^2-d^2)^4$, $y = (2ab)^4$, $z = (2ac)^4$, $t = (2ad)^4$ and $u = (a^2+b^2+c^2+d^2)^4$ in Eq. 1, we get:

L.H.S. =
$$(a^2-b^2-c^2-d^2)^2+(2ab)^2+(2ac)^2+(2ad)^2$$

= $a^4+b^4+c^4+d^4-2a^2b^2-2a^2c^2-2a^2d^2+2b^2c^2+2b^2d^2$
+ $2c^2d^2+4a^2b^2+4a^2c^2+4a^2d^2$
= $a^4+b^4+c^4+d^4+2a^2b^2+2a^2c^2+2a^2d^2+2b^2c^2+2b^2d^2$
+ $2c^2d^2$
= $(a^2+b^2+c^2+d^2)^2$
= R.H.S. (2)

Thus from Eq. 2, we see that $x = (a^2-b^2-c^2-d^2)^4$, $y = (2ab)^4$, $z = (2ac)^4$, $z = (2ad)^4$ and $u = (a^2+b^2+c^2+d^2)^4$ is the general solution of Diophantine Eq. 1. Few solutions of Eq. 1 are as follows:

а	b	С	d	х	у	Z	t	u
1	1	1	1	16	16	16	16	256
1	1	-1	-1	16	16	16	16	256
1	1	2	2	4096	16	256	256	10000
2	2	1	1	16	4096	256	256	10000

Case 2: For n = 3, the Diophantine equation under consideration reduces to:

$$\sqrt[3]{x} + \sqrt[3]{y} + \sqrt[3]{z} + \sqrt[3]{t} = \sqrt[3]{u}$$
(3)

Putting $x = (a^2-b^2-c^2-d^2)^6$, $y = (2ab)^6$, $z = (2ac)^6$, $t = (2ad)^6$ and $u = (a^2+b^2+c^2+d^2)^6$ in Eq. 3, we get:

L.H.S.
$$= (a^{2}-b^{2}-c^{2}-d^{2})^{2}+(2ab)^{2}+(2ac)^{2}+(2ad)^{2}$$
$$= a^{4}+b^{4}+c^{4}+d^{4}-2a^{2}b^{2}-2a^{2}c^{2}-2a^{2}d^{2}+2b^{2}c^{2}+2b^{2}d^{2}$$
$$+2c^{2}d^{2}+4a^{2}b^{2}+4a^{2}c^{2}+4a^{2}d^{2}$$
$$= a^{4}+b^{4}+c^{4}+d^{4}+2a^{2}b^{2}+2a^{2}c^{2}+2a^{2}d^{2}+2b^{2}c^{2}+2b^{2}d^{2}$$
$$+2c^{2}d^{2}$$
$$= (a^{2}+b^{2}+c^{2}+d^{2})^{2}$$
$$= R.H.S.$$
(4)

Thus from Eq. 4, we see that $x = (a^2-b^2-c^2-d^2)^6$, $y = (2ab)^6$, $z = (2ac)^6$, $t = (2ad)^6$ and $u = (a^2+b^2+c^2+d^2)^6$ is the general solution of Diophantine Eq. 3. Few solutions of Eq. 3 are as follows:

а	b	С	d	х	у	Z	t	u
1	1	1	1	64	64	64	64	4096
1	1	-1	-1	64	64	64	64	4096
1	1	2	2	262144	64	4096	4096	1000000
2	2	1	1	64	262144	4096	4096	1000000

Case 3: For n = 4, the Diophantine equation under consideration reduces to:

$$\sqrt[4]{x} + \sqrt[4]{y} + \sqrt[4]{z} + \sqrt[4]{t} = \sqrt[4]{u}$$
 (5)

Putting $x = (a^2-b^2-c^2-d^2)^8$, $y = (2ab)^8$, $z = (2ac)^8$, $t = (2ad)^8$ and $u = (a^2+b^2+c^2+d^2)^8$ in Eq. 5, we get:

L.H.S. =
$$(a^2-b^2-c^2-d^2)^2+(2ab)^2+(2ac)^2+(2ad)^2$$

= $a^4+b^4+c^4+d^4-2a^2b^2-2a^2c^2-2a^2d^2+2b^2c^2+2b^2d^2$
+ $2c^2d^2+4a^2b^2+4a^2c^2+4a^2d^2$
= $a^4+b^4+c^4+d^4+2a^2b^2+2a^2c^2+2a^2d^2+2b^2c^2+2b^2d^2$
+ $2c^2d^2$
= $(a^2+b^2+c^2+d^2)^2$
=R.H.S. (6)

Thus from Eq. 6, we see that $x = (a^2-b^2-c^2-d^2)^8$, $y = (2ab)^8$, $z = (2ac)^8$, $t = (2ad)^8$ and $u = (a^2+b^2+c^2+d^2)^8$ is the general solution of Diophantine Eq. 5. Few solutions of Eq. 5 are as follows:

а	b	С	d	х	у	Z	t	u
1	1	1	1	256	64	64	64	4096
1	1	-1	-1	256	64	64	64	4096
1	1	2	2	16777216	64	65536	65536	10000000
2	2	1	1	256	16777216	65536	65536	10000000

In the above cases, the value of n has been considered as natural number. In the following cases, the value of n has been considered as rational number. **Case 4:** For $n = \frac{2}{3}$, the Diophantine equation under consideration reduces to:

$$\frac{2}{\sqrt[3]{x}} + \frac{2}{\sqrt[3]{y}} + \frac{2}{\sqrt[3]{z}} + \frac{2}{\sqrt[3]{t}} = \frac{2}{\sqrt[3]{u}}$$
(7)

Putting $x = (a^2-b^2-c^2-d^2)^3$, $y = (2ab)^3$, $z = (2ac)^3$, $t = (2ad)^3$ and $u = (a^2+b^2+c^2+d^2)^3$ in Eq. 7, we get:

Thus from Eq. 8, we see that $x = (a^2-b^2-c^2-d^2)^3$, $y = (2ab)^3$, $z = (2ac)^3$, $t = (2ad)^3$ and $u = (a^2+b^2+c^2+d^2)^3$ is the general solution of Diophantine Eq. 7. Few solutions of Eq. 7 are as follows:

а	b	с	d	х	у	Z	t	u
1	1	1	1	-8	8	8	8	64
1	1	-1	-1	-8	8	-8	-8	64
1	1	2	2	-512	8	64	64	1000
2	2	1	1	-8	512	64	64	1000

Case 5: For $n = \frac{2}{5}$, the Diophantine equation under consideration reduces to:

$$\frac{2}{\sqrt[5]{x}} + \frac{2}{\sqrt[5]{y}} + \frac{2}{\sqrt[5]{z}} + \frac{2}{\sqrt[5]{z}} + \frac{2}{\sqrt[5]{t}} = \frac{2}{\sqrt[5]{u}}$$
(9)

Putting $x = (a^2-b^2-c^2-d^2)^5$, $y = (2ab)^5$, $z = (2ac)^5$, $t = (2ad)^5$ and $u = (a^2+b^2+c^2+d^2)^5$ in Eq. 9, we get:

L.H.S. =
$$(a^2-b^2-c^2-d^2)^2+(2ab)^2+(2ac)^2+(2ad)^2$$

= $a^4+b^4+c^4+d^4-2a^2b^2-2a^2c^2-2a^2d^2+2b^2c^2+2b^2d^2$
+ $2c^2d^2+4a^2b^2+4a^2c^2+4a^2d^2$
= $a^4+b^4+c^4+d^4+2a^2b^2+2a^2c^2+2a^2d^2+2b^2c^2+2b^2d^2$
+ $2c^2d^2$
= $(a^2+b^2+c^2+d^2)^2$
=R.H.S. (10)

Thus from Eq. 10, we see that $x = (a^2-b^2-c^2-d^2)^5$, $y = (2ab)^5$, $z = (2ac)^5$, $t = (2ad)^5$ and $u = (a^2+b^2+c^2+d^2)^5$ is the general solution of Diophantine equation Eq. 9. Few solutions of Eq. 9 are as follows:

_								
а	b	С	d	Х	у	Z	t	u
1	1	1	1	-32	32	32	32	1024
1	1	-1	-1	-32	32	-32	-32	1024
1	1	2	2	-32768	32	1024	1024	100000
2	2	1	1	-32	32768	1024	1024	100000

CONCLUSION

Here the surd equation $\sqrt[n]{x} + \sqrt[n]{y} + \sqrt[n]{z} + \sqrt[n]{t} = \sqrt[n]{u}$ has been discussed for positive integral values of n equal to 2, 3, 4 and for rational numbers of the form $n = \frac{2}{p}$, p is 3 and 5. The given surd equation can further be solved for other values of n and p.

SIGNIFICANCE STATEMENT

Diophantine equation is an important branch of Number Theory. It has application in chemistry such as balancing the chemical equation and molecular formula of a compound. Beal's conjecture is a famous open problem of Diophantine equation.

ACKNOWLEDGMENT

Authors are grateful to the reviewers for their valuable suggestions.

REFERENCES

- 1. Wiles, A., 1995. Modular elliptic curves and fermat's last theorem. Ann. Math., 141: 443-551.
- 2. Gopalan, M.A., S. Vidhyalakshmi, N. Thiruniraiselvi and R. Presenna, 2016. On the generalized fermat equation $x^{2a+1}+y^{2a+1}=z^{2a}$. Fundam. J. Math. Math. Sci., 5: 1-5.
- 3. Sarita, H. Kishan and M. Rani, 2016. On the diophantine equation $\sqrt[n]{x+n}\sqrt{y} = \sqrt[n]{z}$. Fundam. J. Math. Math. Sci., 6: 25-31.